• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (9): 1586-1597.

• 计算机网络与信息安全 • 上一篇    下一篇

对抗性仲裁器物理不可克隆函数真的安全吗

姜昊霖1,2,3,邓丁1,2,3,倪少杰1,2,楼生强1,2,3,孙鹏跃1,2,3,张书政1,2,3   

  1. (1.国防科技大学电子科学学院,湖南 长沙 410073;2.导航与时空技术国家级重点实验室,湖南 长沙 410073;
    3.国防科技大学密码研究中心,湖南 长沙 410073)
  • 收稿日期:2023-12-13 修回日期:2024-06-24 出版日期:2025-09-25 发布日期:2025-09-22
  • 基金资助:
    湖南省科技创新计划(2023RC3004)

Is adversarial-arbiter physical unclonable function really secure

JIANG Haolin1,2,3,DENG Ding1,2,3,NI Shaojie1,2,LOU Shengqiang1,2,3,SUN Pengyue1,2,3,ZHANG Shuzheng1,2,3   

  1. (1.College of Electronic Science and Technology,National University of Defense Technology,Changsha 410073;
    2.National Key Laboratory for Positioning,Navigation and Timing Technology,Changsha 410073;
    3.Center for Cryptologic Research,National University of Defense Technology,Changsha 410073,China)

  • Received:2023-12-13 Revised:2024-06-24 Online:2025-09-25 Published:2025-09-22

摘要: 物理不可克隆函数PUF是一种在身份认证领域极具潜力的安全原语,针对不同的PUF提出相应的攻击模型,可以促进PUF不断完善结构设计,提高安全性。A-APUF是2021年提出的一种安全PUF,宣称能有效抵御建模攻击。针对A-APUF,提出了一种基于双向激励序列求解的攻击模型。首先,向A-APUF施加双向激励序列得到双向响应序列,进而计算控制序列;其次,利用控制序列计算异或抽头系数;最后,根据异或抽头系数将A-APUF破解为APUF。实验结果表明,所提出模型对普通保护机制和升级保护机制下的A-APUF均有效,可以将攻击难度降低为普通APUF水平。采用传统的前馈神经网络仅需约1 000个激励响应对,即可对A-APUF达到90%以上的预测准确率。

关键词: 物理不可克隆函数, 混淆, 双向激励序列, 建模攻击

Abstract: Physically unclonable function (PUF) is a promising security primitive for authentication security.Proposing attack models tailored to different PUFs can drive their design improvement and enhance security.Adversarial-arbiter PUF (A-APUF) is a secure PUF proposed in 2021,claiming to effectively resist modeling attacks.This paper focuses on the A-APUF and proposes a bidirectional- challenge-based attack model.Firstly,bidirectional challenge sequences are applied to the A-APUF to obtain bidirectional response sequence,and then the control sequence is calculated.Secondly,the XOR tap coefficients are calculated using the control sequence.Finally,the XOR tap coefficients are used to crack the A-APUF into an arbiter PUF (APUF).The experiments show that this model effectively reduces attack difficulty for both standard and upgraded defense mechanisms of A-APUF,bringing it to the level of an ordinary APUF.Using a conventional feedforward neural network achieves over 90% accuracy with just 1 000 challenge-response  pairs for A-APUF.

Key words: physically unclonable function (PUF), obfuscation, bidirectional challenge sequence, modeling attack