• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2013, Vol. 35 ›› Issue (7): 102-107.

• 论文 • 上一篇    下一篇

改进粒子群算法在调制模式识别中的应用

秦立龙1,王振宇2   

  1. (1.国防科学技术大学电子科学与工程学院,湖南 长沙 410073;
    2.解放军电子工程学院,安徽 合肥 230037)
  • 收稿日期:2012-05-09 修回日期:2012-09-07 出版日期:2013-07-25 发布日期:2013-07-25

Improved particle swarm optimization algorithm
and its application in modulation recognition     

QIN Lilong1,WANG Zhenyu2   

  1. (1.School of Electronic Science and Engineering,National University of Defense Technology,Changsha 410073;
    2.Electronic Engineering Institute,Hefei 230037,China)
  • Received:2012-05-09 Revised:2012-09-07 Online:2013-07-25 Published:2013-07-25

摘要:

针对标准PSO算法易陷入局部最优化和LDWPSO算法不能适应复杂、非线性优化的问题,提出了一种基于信息熵理论的改进粒子群算法(EPSO)。该方法利用信息熵值确定惯性权值,使之具有自适应地调整“探索”和“开发”的能力。将新算法应用于调制模式识别中SVM分类器最优参数值的确定,仿真研究实明,该算法性能稳定。与标准PSO和LDWPSO算法相比,EPSO算法有效增强了跳出局部最优解的能力,具有较好的工程应用性。

关键词: 调制模式识别, 信息熵, 粒子群算法, 支持向量机

Abstract:

In order to resolve the problems that the standard PSO algorithm is apt to be easily trapped in local optima and the LDWPSO algorithm cannot adapt to the complex and nonlinear optimization, the paper proposes a modified particle swarm optimization algorithm based on the information entropy theory, named EPSO. The information entropy value is used by EPSO to determine the inertia weights, which make the algorithm have the ability of “explore” and “exploit” adaptively. The new algorithm is realized for the parameter selection of support vector machine. The simulation results prove that the proposed EPSO is stable. Compared with PSO and LDWPSO, EPSO enhances the ability of escaping from local optimal solution, and becomes more feasible in engineering application.

Key words: modulation recognition;information entropy;particle swarm optimization;support vector machine