• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2015, Vol. 37 ›› Issue (01): 133-138.

• 论文 • 上一篇    下一篇

多轮廓线的三维形体重构技术研究与实现

刘坤良1,黄金明2   

  1. (1.天津工业大学计算机科学与软件学院,天津 300387;2.中国地质调查局发展研究中心,北京 100037)
  • 收稿日期:2013-04-10 修回日期:2013-07-04 出版日期:2015-01-25 发布日期:2015-01-25
  • 基金资助:

    中国地质调查局发展研究中心承担的“华南地区深部岩体圈定与形态研究”工作项目([2011]022214)

Study and implementation of multi-contour 3D reconstruction   

LIU Kunliang1,HUANG Jinming2   

  1. (1.School of Computer Science & Software Engineering,Tianjin Polytechnic University,Tianjin 300387;
    2.Development and Research Center,China Geological Survey,Beijing 100037,China)
  • Received:2013-04-10 Revised:2013-07-04 Online:2015-01-25 Published:2015-01-25

摘要:

实际应用中,三维重构经常面对的不是直接的体数据信息,而是一序列的二维轮廓线数据,因此基于轮廓线的三维重构研究有着极其重要的实用价值。在多轮廓线的三维形体重构中,轮廓对应、轮廓拼接、分叉处理和末端轮廓线的封闭处理等是其关键技术。提出了三维重构中每一个实现步骤具体的解决方案。针对轮廓线绕向问题提出了夹角和检测法,有效避免了轮廓多边形的绕向误判;对轮廓线一对多分叉问题提出了按周长比率解决问题的思路;在末端轮廓线的三角剖分算法中提出了最大张角三角形方法,减少了三角剖分的计算量,达到了在各种形态轮廓线条件下能够实现正确的拼接。实现结果表明,轮廓线拼接过程中每个步骤的解决方法是正确有效的,相较于其他实现方法通用性更强。

关键词: 轮廓线, 三维重构, Delaunay三角剖分, 凸包

Abstract:

In practical applications, 3D reconstruction often faces a series of 2D contour lines rather than the volume data we often process, so studying 3D reconstruction based on contours has important practical values.  The key technologies of 3Dreconstruction based on multiple contours include contours corresponding, contours splicing, crotched contours handling, and terminal contours closing . The concrete solutions to each step of 3D construction of contours are given. According to the winding direction issue of contours, we propose a method of gauging the sum of angles, avoiding error judgment of the winding direction of contours. For the crotching issue of one contour corresponding to multiple contours, we give a way of splitting contours based on the circumference ratio of corresponding contours. We also give the means of maximum angle in order to reduce the calculation time on triangulating terminal contours. The proposed solutions can achieve correct contours splicing of any contours, guarantee that each step of the solution is correct and effective, and they are more universal compared to other solutions.

Key words: contour;3D reconstruction;Delaunay triangulate;convex hull