• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2016, Vol. 38 ›› Issue (05): 857-862.

• 论文 • 上一篇    下一篇

高性能大气校正算法中遥感数据切分策略研究

白连红1,2,徐澍1,2,司一丹1,李莘莘1   

  1. (1.中国科学院遥感与数字地球研究所遥感科学国家重点实验室,北京 100101;2.信阳职业技术学院数学与计算机学院,河南 信阳 464000)
  • 收稿日期:2015-05-05 修回日期:2015-08-21 出版日期:2016-05-25 发布日期:2016-05-25
  • 基金资助:

    国家自然科学基金(41471367,41571417)

A remote sensing data division strategy in
a high-performance atmospheric correction algorithm      

BAI Lianhong1,2,XU Shu1,2,SI Yidan1,LI Shenshen1   

  1. (1.State Key Laboratory of Remote Sensing Science,Institute of Remote Sensing and Digital Earth,
    Chinese Academy of Sciences,Beijing 100101;
    2.The School of Mathematics and Computer Science,Xinyang Vocational and Technical College,Xinyang 464000,China)
  • Received:2015-05-05 Revised:2015-08-21 Online:2016-05-25 Published:2016-05-25

摘要:

高分辨率卫星遥感数据在地物识别等方面具有明显优势,然而其定量化应用中需要精确的大气校正,该过程通常相当耗时。分别研究了大气校正算法串行处理方法及基于通用计算机集群系统的并行处理过程。通过对2012年7月我国华北地区的环境卫星CCD数据进行大气校正,并分析了串、并行过程各个步骤运行时间,表明了对大气校正并行处理的高可行性。针对并行过程中负载不均衡和通讯频繁等问题,设计了基于卫星像元特征的数据切分策略,并对不同并行算法进行了性能分析,表明了本文反演结果的可靠性,以及提出的切分策略能达到更高的加速比。

关键词: 遥感, 大气校正, 气溶胶光学厚度, 数据切分, 负载均衡

Abstract:

Highresolution satellite data is of  powerful potentiality in applications such as surface object identification. However, the related quantitative remote sensing usually requires an accurate atmospheric correction, which is quite timeconsuming. The serial and parallel processing of atmospheric correction in the PCbased cluster system is studied. The atmospheric corrections of HJsatellite CCD data over North China Plain in July 2012 are shown in this paper, and the execution time of each step in the serial and parallel processing is also analyzed, which proves the high feasibility of atmospheric correction parallelization. To avoid unbalanced loads and frequent communications, we design a data division strategy based on pixel features and compare the performance of three different division strategies, which indicates that the proposed strategy has higher reliability and can achieve a higher speedup ratio.

Key words: remote sensing;atmospheric correction;aerosol optical depth;data division;balanced loads