• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (11): 2010-2018.

• 图形与图像 • 上一篇    下一篇

基于注意力机制的自适应滤波遥感图像分割网络

吴从中1,董浩1,方静2   

  1. (1.合肥工业大学计算机与信息学院,安徽 合肥 230601; 
    2.安徽省六安市金安区生态环境分局,安徽 六安 237005)

  • 收稿日期:2021-01-21 修回日期:2021-05-02 接受日期:2022-11-25 出版日期:2022-11-25 发布日期:2022-11-25
  • 基金资助:
    安徽省重点研究与开发计划(201904d07020018)

An adaptive filtering remote sensing image segmentation network based on attention mechanism

WU Cong-zhong1,DONG Hao1,FANG Jing2   

  1. (1.School of Computer and Information,Hefei University of Technology,Hefei 230601;
    2.Ecological Environment Branch of Jin’an District,Lu’an 237005,China)
  • Received:2021-01-21 Revised:2021-05-02 Accepted:2022-11-25 Online:2022-11-25 Published:2022-11-25
  • Supported by:

摘要: 遥感图像尺度变化较大,背景类内差异较大以及前景和背景之间的不平衡等问题,增加了遥感图像小目标和目标边缘分割的难度。在卷积神经网络中,下采样引起的混叠效应造成目标信息的失真和损失,容易被忽视。同时,扩张卷积虽然捕获到了丰富的感受野信息,但仍存在冗余的背景信息干扰。据此,提出了一种基于注意力机制自适应滤波分割网络(ARGNet)。在DeepGlobe Road Extraction数据集和Inria Aerial Image Labeling数据集上进行实验,结果表明,所提出的网络能够分割出更加精准的目标。

关键词: 卷积神经网络, 遥感图像分割, 自适应滤波, 注意力机制, 特征融合

Abstract: Due to the large-scale changes of remote sensing images, large intra-class differences in the background, and the imbalance between the foreground and the background, it is difficult to segment the small objects and object edges of remote sensing images. In convolutional neural networks, the aliasing effect caused by downsampling causes the distortion and loss of object information, which is easily ignored. At the same time, although the expanded convolution has captured rich receptive field information, there is still redundant background information interference. Accordingly, an adaptive filter segmentation network (ARGNet) based on an attention mechanism is proposed. Experiments on the DeepGlobe Road Extraction dataset and the Inria Aerial Image Labeling dataset show that the proposed network can segment more accurate objects.

Key words: convolutional neural network, remote sensing image segmentation, adaptive filtering, attention mechanism, feature fusion