• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2016, Vol. 38 ›› Issue (05): 871-876.

• 论文 • 上一篇    下一篇

基于快速自编码的RELM的文本分类

周杭霞,叶佳骏,任欢   

  1. (中国计量大学信息工程学院,浙江 杭州 310018)
  • 收稿日期:2015-12-03 修回日期:2016-02-08 出版日期:2016-05-25 发布日期:2016-05-25
  • 基金资助:

    国家自然科学基金(61027005)

Text classification based on fast autoencoder RELM  

ZHOU Hangxia,YE Jiajun,REN Huan   

  1. (College of Information Engineering,China Jiliang University,Hangzhou 310018,China)
  • Received:2015-12-03 Revised:2016-02-08 Online:2016-05-25 Published:2016-05-25

摘要:

正则化极限学习机RELM是一种单隐层前馈神经网络,不同于传统神经网络算法,RELM通过随机设置输入层权重和偏置值,可以快速求得输出层权重,并且引入正则化因子,能够提高模型的泛化能力。针对文本信息高维度、多类别的问题,提出一种基于快速自编码的正则化极限学习机FARELM。将由RELM改进后的快速自编码神经网络对样本进行无监督特征学习,并对特征提取后的数据使用RELM进行分类。实验表明,FARELM的学习速度和分类精度较优。

关键词: 文本分类, 特征提取, 自动编码器, 正则化极限学习机

Abstract:

The regularized extreme learning machine (RELM) is a kind of singlehidden layer feed forward neural networks (SLFNs). Unlike the traditional neural network algorithm, the RELM randomly chooses input weights and bias of hidden nodes, and analytically determines the output weights, Besides, the introduction of the regularized factor can improve the generalization ability of the model. Aiming at the problem of highdimension and multiclass of text information, we propose a novel RELM based on fast autoencoder (FARELM). The fast autoencoder neural network improved by the RELM is used for unsupervised feature learning, and the RELM is used to classify the data after feature extraction. Experimental results show that the FARELM can achieve faster learning speed and better classification accuracy.

Key words: text classification;feature extraction;autoencoder;regularized extreme learning machine