• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2016, Vol. 38 ›› Issue (05): 975-982.

• 论文 • 上一篇    下一篇

一种基于局部符号差能量的非局部分割模型

闫沫1,王瑜2   

  1. (1.西安建筑科技大学机电工程学院,陕西 西安 710055;2.西安航空学院机械学院,陕西 西安 710077)
  • 收稿日期:2015-04-17 修回日期:2015-06-26 出版日期:2016-05-25 发布日期:2016-05-25

A nonlocal segmentation model based
on local signed difference energy

YAN Mo1,WANG Yu2   

  1. (1.College of Mechanical and Electrical Engineering,Xi’an University of Architecture and Technology,Xi’an 710055;
    2.School of Mechanical Engineering,Xi’an Aeronautical University,Xi’an 710077,China)
  • Received:2015-04-17 Revised:2015-06-26 Online:2016-05-25 Published:2016-05-25

摘要:

针对灰度非均匀的图像,提出一种基于局部符号差能量的非局部图像分割模型。该模型包含基于局部符号差能量的数据驱动项和非局部全变分正则项,具有局部可分离性和全局一致性的特点。由于本文模型是凸的,因此在数值实现上可以采用splitBregman迭代算法,具有较快的运算速度。同经典的基于局部区域的主动轮廓分割模型相比,该方法具有以下优点:(1) 该模型受初始化的影响很小;(2) 采用splitBregman迭代算法,运算速度更快;(3) 能够对具有细密纹理和具有弱边缘目标的图像进行正确分割。实验结果表明,该模型对灰度非均匀图像能够进行较准确的分割,相比其他模型具有更好的鲁棒性。

关键词: 图像分割, 非局部全变分, 灰度非均匀, 局部符号差, splitBregman算法

Abstract:

We propose a nonlocal image segmentation model based on local signed difference (LSD) energy for images with intensity inhomogeneity. The model consists of a data driven term based on LSD energy and a nonlocal total variation regularization term, and possesses local separability and global consistency. Due to the convexity of the model, the splitBregman iteration algorithm can be used in the numerical implementation, thus having a fast speed. Compared with the classical local regionbased active contour models (ACMs), the proposed model has several advantages as follows: 1) it is less sensitive to the initialization; 2) it is more efficient by using the splitBregman iteration algorithm; 3) it can correctly segment images with fine textures and weak object boundaries. Experimental results show that the model can segment images with intensity inhomogeneity correctly and works more robust than other models.

Key words: image segmentation;nonlocal total variation;intensity inhomogeneity;LSD;splitBregman algorithm