李熙莹1,2,3,4 ,周智豪1,2,3,4,吕硕1,2,3,4
LI Xiying1,2,3,4,ZHOU Zhihao1,2,3,4,L Shuo1,2,3,4
摘要:
车脸部件检测能够广泛地应用于车辆识别及车辆的语义分割。尽管对于车脸的检测已经做出过大量的努力,但现有的研究大多集中在车脸的整块区域的检测及定位,提出了一种基于选择性搜索的车脸部件检测算法。该算法分为两个阶段:首先,将车辆图片进行高斯滤波去噪以及图像归一化预处理。其次,对预处理后的图片,利用基于图表示的图像分割算法获取初始分割区域,计算两两相邻区域在颜色、纹理、大小及吻合度之间的相似度;随后利用初始分割区域相邻区域间的颜色、纹理、大小以及吻合度的相似性对初始分割区域进行合并,从而准确分割车脸各部件。采用部分香港中文大学的公开数据集CompCars,总计4 199张图像,作为测试样本以测试车脸部件分割检测效果。实验结果表明,该算法检测车脸部件的平均重合度达到73.74%,明显胜过其它目标检测算法,此外,该算法不需训练,具有更强的通用性。