• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 图形与图像 • 上一篇    下一篇

基于选择性搜索算法的车脸部件检测

李熙莹1,2,3,4 ,周智豪1,2,3,4,吕硕1,2,3,4   

  1. (1.中山大学智能工程学院,广东 广州 510006;2.广东省智能交通系统重点实验室,广东 广州 510006;
    3.视频图像智能分析与应用技术公安部重点实验室,广东 广州 510006;
    4.视频图像信息智能分析与共享应用技术国家工程实验室,北京 100048)
  • 收稿日期:2017-06-14 修回日期:2017-11-09 出版日期:2018-10-25 发布日期:2018-10-25
  • 基金资助:

    国家自然科学基金(U1611461)

A vehicle face detection algorithm
based on selective search

LI Xiying1,2,3,4,ZHOU Zhihao1,2,3,4,L Shuo1,2,3,4   

  1. (1.School of Intelligent Systems Engineering,Sun Yatsen University,Guangzhou 510006;
    2.Key Laboratory of Intelligent Transportation System of Guangdong Province,Guangzhou 510006;
    3.Key Laboratory of Video and Image Intelligent Analysis and Application Technology,
    Ministry of Public Security,People’s Republic of China,Guangzhou 510006;
    4.National Engineering Laboratory of Intelligent Video Analysis and Application,Beijing 100048,China)
  • Received:2017-06-14 Revised:2017-11-09 Online:2018-10-25 Published:2018-10-25

摘要:

车脸部件检测能够广泛地应用于车辆识别及车辆的语义分割。尽管对于车脸的检测已经做出过大量的努力,但现有的研究大多集中在车脸的整块区域的检测及定位,提出了一种基于选择性搜索的车脸部件检测算法。该算法分为两个阶段:首先,将车辆图片进行高斯滤波去噪以及图像归一化预处理。其次,对预处理后的图片,利用基于图表示的图像分割算法获取初始分割区域,计算两两相邻区域在颜色、纹理、大小及吻合度之间的相似度;随后利用初始分割区域相邻区域间的颜色、纹理、大小以及吻合度的相似性对初始分割区域进行合并,从而准确分割车脸各部件。采用部分香港中文大学的公开数据集CompCars,总计4 199张图像,作为测试样本以测试车脸部件分割检测效果。实验结果表明,该算法检测车脸部件的平均重合度达到73.74%,明显胜过其它目标检测算法,此外,该算法不需训练,具有更强的通用性。

关键词: 车脸部件检测, 选择性搜索, 合并策略, 语义分割

Abstract:

Vehicle face detection benefits a wide range of applications such as vehicle identification and semantic segmentation of the vehicle. Although great  dedication to this task, most existing researches focus on the detection and positioning of the entire area of the vehicle face. We propose a new vehicle face detection method based on selective search. The approach has two steps. Firstly, the vehicle image is denoised through Gaussian filter as the preprocess. Secondly, we use the image segmentation algorithm based on graph presentation to obtain the initial image segmentation regions from the preprocessed images. We calculate the similarity degree of adjacent regions in color, texture, size and coincidence degree, and then merge the initial split area with the one with the highest similarity. We conduct experiments on 4199 vehicle images of CompCars data set from the Chinese University of Hong Kong for vehicle front face detection test. The results demonstrate that the average coincidence degree of vehicle face is 73.74%, which is better than other object detection algorithms. In addition, the proposed method also has better generalization ability across data set without training.
 

Key words: vehicle face detection, selective search, merging strategy, semantic segmentation