• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 人工智能与数据挖掘 • 上一篇    下一篇

基于细菌觅食的改进蚁群算法

张立毅1,肖超2,费腾1   

  1. (1.天津商业大学信息工程学院,天津 300134;2.天津商业大学经济学院,天津 300134)
     
  • 收稿日期:2017-01-03 修回日期:2017-06-28 出版日期:2018-10-25 发布日期:2018-10-25
  • 基金资助:

    国家自然科学基金(61401307);中国博士后科学基金(2014M561184);天津市应用基础与前沿技术研究计划项目(天津市自然科学基金)(16JCYBJC28800)

An improved ant colony optimization
algorithm based on bacterial foraging
 

ZHANG Liyi1,XIAO Chao2,FEI Teng1   

  1. (1.School of Information Engineering,Tianjin University of Commerce,Tianjin 300134;
    2.School of Economics,Tianjin University of Commerce,Tianjin 300134,China)
     
  • Received:2017-01-03 Revised:2017-06-28 Online:2018-10-25 Published:2018-10-25

摘要:

蚁群算法是模仿蚂蚁觅食行为的一种新的仿生学智能优化算法。针对其收敛速度慢和易陷入局部最优的不足,将细菌觅食算法和蚁群算法相结合,提出一种细菌觅食蚁群算法。在蚁群算法迭代过程中,引入细菌觅食算法的复制操作,以加快算法的收敛速度;引入细菌觅食算法的趋向操作,以增强算法的全局搜索能力。通过经典的旅行商问题和函数优化问题测试表明,细菌觅食蚁群算法在寻优能力、可靠性、收敛效率和稳定性方面均优于基本蚁群算法及两种改进蚁群算法。

 

关键词: 蚁群算法, 细菌觅食算法, 旅行商问题

Abstract:

Ant colony optimization is a new bionic intelligent optimization algorithm to mimics the foraging behavior of ants. Aiming at the problems of local optimum and slow convergence speed of ant colony optimization, we propose a bacteria foraging ant colony optimization algorithm by combining the bacterial foraging algorithm with the ant colony algorithm. In the iterative process of ant colony optimization, a reproduction process is introduced to the ant colony optimization to accelerate the convergence speed. A chemo taxis process is introduced to enhance the global searching ability. Simulation experiments on the classic traveling salesman problem and function optimization problem show that, compared with the traditional ant colony optimization and two improved ant colony optimization algorithms, the proposed algorithm is more effective in optimization capability, reliability, convergence efficiency and stability.
 

Key words: ant colony algorithm, bacteria foraging algorithm, traveling salesman problem