摘要:
最大熵分割算法对于目标与背景之间界限模糊的图像分割效果较好,但该算法对图像边缘的处理能力较差。最大类间方差分割算法对图像边缘的识别能力较强,但该算法对于目标和背景之间界限模糊的图像分割效果不好。针对上述问题,提出了一种基于最大类间方差的最大熵图像分割算法,该算法既能很好地对目标与背景之间界限模糊的图像进行分割,又能有效地识别图像的边缘。实验结果表明,本文所提算法对目标与背景之间界限模糊的图像的分割效果以及对图像边缘的识别能力均优于传统的最大类间方差算法和最大熵算法,且具有更好的有效性和鲁棒性。
易三莉,张桂芳,贺建峰,李思洁. 基于最大类间方差的最大熵图像分割[J]. 计算机工程与科学.
YI Sanli,ZHANG Guifang,HE Jianfeng,LI Sijie.
Maximum entropy image segmentation
based on maximum interclass variance
[J]. Computer Engineering & Science.