• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (05): 910-915.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于改进蚁群优化算法的养殖场机器人路径规划

赵广元1,2,赵英1   

  1. (1.西安邮电大学自动化学院,陕西 西安 710121;
    2.西安邮电大学西安市先进控制与智能处理重点实验室,陕西 西安 710121)
  • 收稿日期:2020-08-16 修回日期:2020-12-16 接受日期:2022-05-25 出版日期:2022-05-25 发布日期:2022-05-24
  • 基金资助:
    中国学位与研究生教育学会面上课题(学会文(2021)120号)

Farm robot path planning based on improved ant colony algorithm

ZHAO Guang-yuan1,2,ZHAO Ying1   

  1. (1.School of Automation,Xi’an University of Posts and Telecommunications,Xi’an 710121;
    2.Xi’an  Key Laboratory of Advanced Control and Intelligent Processing,
    Xi’an University of Posts and Telecommunications,Xi’an 710121,China)
  • Received:2020-08-16 Revised:2020-12-16 Accepted:2022-05-25 Online:2022-05-25 Published:2022-05-24

摘要: 养殖场巡视机器人路径规划是实现规模化养殖场智能监控的关键所在,针对机器人巡视过程中寻找最优充电路线的问题,提出一种改进的蚁群优化算法IACO。利用工作环境的全局信息建立目标吸引函数,提高蚁群选择最佳路径到达目标点的概率,缩短了算法的迭代时间。通过加入额外的信息素更新项和改进信息素挥发系数增强算法的全局搜索能力,避免算法搜索后期出现过早收敛而陷入局部最优。在简单和复杂环境中的仿真实验结果表明,与经典蚁群优化算法相比,该算法具有更快的收敛速度和良好的稳定性,可快速收敛到最佳路径。

关键词: 移动机器人, 路径规划, 蚁群算法, 目标吸引函数, 自适应

Abstract: The path planning of farm inspection robots is the key to realize intelligent monitoring of large-scale farms. Aiming at the problem of finding the optimal charging route during robot inspections, an improved ant colony algorithm is proposed. This algorithm uses the global information of the working environment to establish a target attraction function, guides the ant colony to choose the best path to reach the target point, and reduces the iteration time of the algorithm. By adding additional pheromone update items and improving the pheromone volatilization coefficient, the global search capability of the algorithm is enhanced to avoid the premature convergence in the later stage of the algorithm search and falling into the local optimum. Simulation experiments in simple and complex environments show that, compared with the classic ant colony algorithm, the algorithm has faster convergence speed and good stability, and can quickly converge to the best path.

Key words: mobile robot, path planning, ant colony algorithm, target attraction function, adaptive ,