摘要:
兴趣点推荐是推荐系统的关键研究之一,传统的算法只利用用户签到信息进行推荐,且对于签到信息只单纯地考虑签到和没签到,而忽略了用户签到的频次和信任关系。为提高推荐精度,提出了一种融合用户相似性、地理位置和信任关系的混合推荐算法(UGT)。对于签到信息,采用签到频次来代替传统的二值签到,并对签到信息添加时间权重;对于基于用户的协同过滤,提出了一种邻居选择策略来提高预测精度;对于信任关系,首先分析用户的属性,然后给出社会地位的计算方法,重构信任度的计算方法。实验结果表明,该混合算法相比较传统的推荐算法而言,在准确率和召回率上有了显著的提升。
刘辉, ., 曾斌, 刘子恺. 融合邻居选择策略和信任关系的兴趣点推荐[J]. 计算机工程与科学.
LIU Hui, ZENG Bin, LIU Zi-kai.
Point-of-interest recommendation based on
neighbor selection strategy and trust relationship
[J]. Computer Engineering & Science.