计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (03): 503-510.
郭媛,王充,杜松英
GUO Yuan,WANG Chong,DU Song-ying
摘要: 针对常见混沌映射随机性不高、序列元素相关性较强、构造测量矩阵元素需间隔采样来满足数据统计的独立性等问题,通过级联量子Logistic混沌系统和广义Fibonacci数列构造一种新的复合混沌系统。在信息熵、空间特性和相关系数等方面对不同混沌测量矩阵进行定量分析,验证了提出的混沌系统具有遍历性和很强的混沌特性要求,序列元素具有较低相关性,满足数据统计的独立性要求。证明了提出的混沌系统构造的压缩感知测量矩阵满足RIP条件。实验分别对一维稀疏信号和二维图像进行仿真和讨论,结果表明,相较于其他测量矩阵采样率在1/2时,基于所提系统的压缩感知矩阵构造算法的一维稀疏信号重构成功率提高了4%,二维图像重构的信噪比提高了0.2 dB。测量矩阵的构造无需对采样间隔进行提前估计,提高了数据利用率,解决了其他混沌测量矩阵间隔采样造成的极大数据资源浪费的问题。