计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (05): 906-916.
张俊鹏,刘辉,李清荣
ZHANG Jun-peng,LIU Hui,LI Qing-rong
摘要: 工业生产中常根据林格曼烟气黑度判断工业烟尘的污染等级,一种有效的方式是应用计算机视觉系统对工业烟尘进行监测,
其中对烟尘目标进行准确分割是该系统的关键技术。因为工业烟尘具有形状不固定、和云相似度高等特点,现有算法在复杂场景下对烟尘进行分割时容易受到干扰,分割准确度有待提高。针对这一问题,提出一种基于FCN-LSTM的工业烟尘图像分割方法,在全卷积网络对图像空间特征提取的基础上,使用长短时记忆网络提取图像序列的时间信息,通过烟尘的动态特征对运动的烟尘和背景进行区分,增强复杂场景下的抗干扰能力。实验表明,本文模型相比于全卷积网络,在复杂场景下的抗干扰能力有显著提升,能够有效克服来自云的干扰,对全卷积网络分割结果中易出现干扰点的问题也有改善,IoU指标最高有8.04%的提升。