• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (04): 734-742.

• 人工智能与数据挖掘 • 上一篇    下一篇

融合序列局部信息的日期感知序列推荐算法

曹浩东,汪海涛,贺建峰   

  1. (昆明理工大学信息工程与自动化学院,云南 昆明 650500)
  • 收稿日期:2023-03-24 修回日期:2023-05-22 接受日期:2024-04-25 出版日期:2024-04-25 发布日期:2024-04-18
  • 基金资助:
    国家自然科学基金(82160347)

Date-aware sequential recommendation fusing local information of sequences

CAO Hao-dong,WANG Hai-tao,HE Jian-feng   

  1. (Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China)
  • Received:2023-03-24 Revised:2023-05-22 Accepted:2024-04-25 Online:2024-04-25 Published:2024-04-18

摘要: 基于自注意力机制的序列推荐算法利用用户的交互序列建模用户的动态偏好,预测用户未来的行为。但是,将交互序列直接输入自注意力层将会限制算法对序列局部关联信息的有效利用。此外,现有的大部分推荐算法利用用户最近的行为表征与目标项目的点积计算项目得分,这将削弱先前交互项目对推荐结果的影响。提出融合序列局部信息的日期感知序列推荐算法,使用多个垂直过滤器融合各交互项目在交互序列中的多种局部关联信息,同时使用交叉注意力机制捕获所有历史交互项目和目标项目的关系,并且抛弃了传统的位置嵌入方法,改用交互发生的日期作为绝对时间嵌入。在多个公开数据集上的实验表明,该算法在不同的评估指标上较基线算法均有一定程度的提升。

关键词: 序列推荐, 卷积神经网络, 注意力机制

Abstract: The sequence recommendation algorithm based on self-attention mechanism utilizes users’ interactive sequences to model their dynamic preferences and predict their future behaviors. However, directly inputting the interactive sequences into the self-attention layer will limit the effective utilization of local association information in the sequences. In addition, most of the existing recommendation algorithms use the dot product of the representation of the users’ recent behaviors and the target items to calculate the item scores, which will weaken the impact of previous interactive items on the recommendation results. This paper proposes a date-aware sequential recommendation algorithm that fuses local information of sequences. It uses multiple vertical filters to fuse multiple local association information of each interactive item in the interactive sequence, and uses cross-attention mechanism to capture the relationships between all historical interactive items and target items. It also abandons the traditional position embedding method and replaces it with absolute time embedding based on the date of inter-action occurrence. Experimental results on multiple public datasets show that the algorithm has certain improvement compared with the baseline algorithms in different evaluation indicators.

Key words: sequence recommendation, convolutional neural network, attention mechanism