• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (03): 486-494.

• 图形与图像 • 上一篇    下一篇

融合感知损失的单幅雾霾图像深度估计

张蕾1,王园宇2,张文涛2   

  1. (1.太原理工大学软件学院,山西 晋中 030600;2.太原理工大学信息与计算机学院,山西 晋中 030600)
  • 收稿日期:2020-09-03 修回日期:2020-12-08 接受日期:2022-03-25 出版日期:2022-03-25 发布日期:2022-03-24
  • 基金资助:
    山西省自然科学基金(201801D121142)

Single hazy image depth estimation fusing the perceptual loss function

ZHANG Lei1,WANG Yuan-yu2,ZHANG Wen-tao2   

  1. (1.College of Software,Taiyuan University of Technology,Jinzhong 030600;
    2.College of Information and Computer,Taiyuan University of Technology,Jinzhong 030600,China)
  • Received:2020-09-03 Revised:2020-12-08 Accepted:2022-03-25 Online:2022-03-25 Published:2022-03-24

摘要: 针对雾霾情况下室内外图像深度难以估计的问题,提出了融合感知损失函数的单幅雾霾图像深度估计方法。首先采用双尺度网络模型对雾霾图像进行粗提取,再结合底层特征进行局部细化;然后在上采样阶段使用多卷积核上采样方法,得到雾霾图像的预测深度图;最后将像素级损失函数与感知损失函数结合构造新的复合损失函数,对网络进行训练。在室内NYU Depth v2数据集和室外Make3D数据集上进行训练、测试和验证,结果表明:添加了多卷积核上采样方法和复合损失函数的双尺度网络模型能够很好地估计出单幅雾霾图像的深度信息,提高了雾霾情况下的深度估计精度和质量,同时缩短了模型训练时间,提高了对雾霾图像深度估计的适用性和准确性。

关键词: 深度估计, 单幅雾霾图像, 感知损失函数, 卷积神经网络, 计算机视觉

Abstract: To address the difficulty of estimating the indoor and outdoor depth under hazy conditions,a single hazy image depth estimation method fusing the perceptual loss function is proposed. Firstly, a two-scale network model is used to coarsely extract the hazy images that are  are then locally refined by combining the underlying features. Then, in the upsampling stage, a multi-convolution kernel upsampling method is used to obtain the haze image predition depth map.  Finally, the network is trained by combining the pixel-level loss function and the perceptual loss function into a new composite loss function. The experiments are trained, tested, and validated on the indoor NYU Depth v2 dataset and the outdoor Make3D dataset. The result shows that the two-scale network model combining the multi-convolutional kernel up-sampling method and the composite loss function can better estimate the depth information of a single hazy image, improve the accuracy and quality of depth estimation under hazy condition, shorten the training time of the model,and improve the applicability and accuracy of the depth estimation of hazy images.


Key words: depth estimation, single hazy image, perceptual loss function, convolutional neural network, computer vision