• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (05): 894-900.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于EMD距离的稀疏自编码器

范韫   

  1. (国防大学政治学院,上海 200433)

  • 收稿日期:2020-07-05 修回日期:2020-12-04 接受日期:2022-05-25 出版日期:2022-05-25 发布日期:2022-05-24

Sparse autoencoder based on earth mover distance

FAN Yun   

  1. (School of Politics,National Defense University,Shanghai 200433,China)
  • Received:2020-07-05 Revised:2020-12-04 Accepted:2022-05-25 Online:2022-05-25 Published:2022-05-24

摘要: KL散度在机器学习领域被广泛地用于模型损失函数之中来度量分布的距离。在稀疏自编码器中,KL散度被用作损失函数的惩罚项来度量神经元输出与稀疏参数的距离,使得神经元输出趋近稀疏参数,从而抑制神经元的激活以得到稀疏编码。在WGAN中,Wasserstein距离被用于解决GAN的梯度消失和模式塌陷问题,使得GAN的训练更加稳定。得益于Wasserstein距离在GAN中的成功应用,提出了基于EMD距离的稀疏自编码器SAE-EMD。实验结果表明,相比于使用KL散度与JS散度,使用EMD距离作为惩罚项的稀疏自编码器可以使得真实样本与重构样本之间的重构误差减小,并且随着惩罚参数的增大,编码更加稀疏。


关键词:

Abstract: KL divergence is adopted widely in the field of machine learning to measure distances between distributions in model loss function. In the sparse autoencoder, the KL divergence is used as the penalty term of the loss function to measure the distance between the neuron output and the sparse parameter, so that the neuron output approaches the sparse parameter, thereby suppressing the activation of the neuron to obtain sparse coding. In WGAN, Wasserstein distance is used to solve the gradient va- nishing and mode collapse problems of GAN, making the training of GAN more stable. The experimental results show that, compared with the sparse autoencoder using KL divergence and JS divergence, the sparse autoencoder using EMD distance as a penalty term can reduce the reconstruction error between real samples and reconstructed samples. As the penalty parameter increases, the encoding becomes more sparse. 

Key words: sparse autoencoder, regularization, earth mover distance, KL divergence