计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (05): 901-909.
陈健鹏,陈剑,佘祥荣,水新莹,陈刚
CHEN Jian-peng,CHEN Jian,SHE Xiang-rong,SHUI Xin-ying,CHEN Gang
摘要: 中文地名地址的标准化在当前智慧城市的建设中起到至关重要的作用。传统的地名地址标准化技术通常使用基于文本字符层面的相似度计算或规则库匹配的方法,对复杂、特殊或冗余地址的处理效果较差。通过将地址标准化任务转换为针对地址相似的匹配度计算任务,提出了一种融合注意力机制与多层次语义表征的地址匹配算法。首先依据地址文本特殊的语法结构,利用Trie语法树构建标准地址树;而后基于注意力机制,利用Bi-LSTM网络与CNN网络生成地址对的多层次语义表示;最后通过曼哈顿距离计算相似度。在自主构建的数据集上,提出的SGAM模型的匹配准确度(91.22%)相比TextRCNN、FastText、基于注意力的卷积神经网络(ABCNN)等模型提升了4%~10%,表明SGAM模型在地址匹配任务上有着更好的性能表现。