计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (08): 1331-1341.
朱正东1,吴寅超2,胡亚红2,蒋家强1
ZHU Zheng-dong1,WU Yin-chao2,HU Ya-hong2,JIANG Jia-qiang1
摘要: 为提升服务质量,数据中心需要确保在规定的截止时间前完成用户作业,因此必须根据实时的系统资源对作业进行有效的调度。提出了一种作业调度算法,根据预测的作业执行时间进行批作业调度,以最小化批作业的完成时间。作业执行时间预测模型基于长短期记忆LSTM网络,根据用户作业类型、作业量、作业需要的CPU核数和内存数量,以及作业需要的资源在系统总资源中的占比,对用户作业的执行时间进行预测。预测结果用于判断集群是否有能力按时完成用户作业,同时为合理安排各作业的执行顺序提供依据。通过实验确定了影响LSTM时间预测模型性能的各超参数取值,如迭代次数、学习率和网络层数等。实验表明,与SVR模型、ARIMA模型和BP模型相比,基于LSTM的作业执行时间预测模型的决定系数R2分别有2.97%,2.34%和5.66%的提升效果,且预测的平均误差仅为0.78%。