• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

基于加速收敛蜂群算法的资源感知调度器

江涛1,袁景凌1,陈旻骋1,宋华明2   

  1. (1.武汉理工大学计算机科学与技术学院,湖北 武汉 430070;2.湖北省咸宁市公安局,湖北 咸宁 437099)
  • 收稿日期:2016-04-21 修回日期:2016-06-13 出版日期:2016-08-25 发布日期:2016-08-25
  • 基金资助:

    国家自然科学基金(61303029);教育部留学回国启动基金([2012]1707);湖北省自然科学基金(2014CFB836)

Resource-aware scheduler based on   bee colony algorithm with fast convergence        

JIANG Tao1,YUAN Jing-ling1,CHEN Min-cheng1,SONG Hua-ming2   

  1. (1.School of Computer Science and Technology,Wuhan University of Technology,Wuhan 430070;
    2.Xianning Public Security Bureau of Hubei Province,Xianning 437099,China)
  • Received:2016-04-21 Revised:2016-06-13 Online:2016-08-25 Published:2016-08-25

摘要:

为了能有效处理海量数据,进行关联分析、商业预测等,Hadoop分布式云计算平台应运而生。但随着Hadoop的广泛应用,其作业调度方面的不足也显现出来,现有的多种作业调度器存在参数设置复杂、启动时间长等缺陷。借助于人工蜂群算法的自组织性强、收敛速度快的优势,设计并实现了能实时检测Hadoop内部资源使用情况的资源感知调度器。相比于原有的作业调度器,该调度器具有参数设置少、启动速度快等优势。基准测试结果表明,该调度器在异构集群上,调度资源密集型作业比原有调度器快10%~20%左右。

关键词: 云计算, Hadoop, 作业调度器, 人工蜂群, 资源感知

Abstract:

In order to effectively deal with massive data, correlation analysis, business forecast and so on, the distributed cloud computing platform Hadoop has emerged. But with the wide application of Hadoop, the job scheduling problems become prominent. Many existing job schedulers have defects such as complexity of parameters setting, long start time and so on. Taking full advantages of the artificial bee colony algorithm in terms of strong self-organizing ability and fast convergence, we design and implement a resource-aware scheduler of Hadoop which can detect real-time internal resources utilization. Compared to those classical job schedulers, the proposed scheduler has advantages of few parameters and fast starting speed. Experiments on benchmark programs show that the proposal can schedule resource intensive work faster than the original one by 10% ~ 20% on heterogeneous clusters.

Key words: cloud computing, Hadoop, job scheduler, artificial bee colony, resource-aware