计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (10): 1762-1770.
马满福1,姜璐娟1,李勇1,张强1,范颜军2,邓晓飞1
MA Man-fu1,JIANG Lu-juan1,LI Yong1,ZHANG Qiang1,FAN Yan-jun2,DENG Xiao-fei1
摘要: 个性化推荐系统在减轻信息超载、提供个性化服务和辅助用户决策等方面应用广泛,链路预测是个性化推荐的重要方法之一。传统启发式链路预测方法仅考虑网络的图结构特征,缺乏对显式特征和隐式特征信息的应用,且大多数方法基于无向无权网络。针对传统链路预测方法存在的不足,基于集体注意力流网络和R-GCN方法,提出了链路预测算法AFP,将注意力流网络中2节点间不同的边方向抽象为2种边关系类型,并引入注意力机制学习网络中的节点属性和边属性,还综合考虑了网络的图结构特征、显式特征和隐式特征,最后通过评分函数得到三元组成立与否的概率,将链路预测问题转化为一个二分类问题,预测节点间的边属于某个关系类型的可能性。实验结果表明,相比于GCN、GAT等6个基准算法,该算法在准确度、精度和召回率等多个评价指标上均有提升。