计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (11): 2019-2026.
陈清江,李金阳,屈梅,胡倩楠
CHEN Qing-jiang,LI Jin-yang,QU Mei,HU Qian-nan
摘要: 由于环境的不确定性,捕获的图像存在亮度低、对比度低和信息丢失严重等问题,且利用现存算法增强后的图像存在曝光过度问题,不能满足计算机视觉任务的输入要求。针对此问题,提出了基于端到端双网络的低照度图像增强方法,该网络由Inception网络模块与URes-Net模块组成。首先利用Retinex理论合成低照度图像样本;然后运用双网络模型进行特征提取、特征融合与重建,根据测试集的损失不断调整参数以优化模型,最终使双网络模型具有较高的低照度图像增强能力。实验结果表明,所提方法的PSNR和SSIM的均值分别为28.659 8 dB和0.896 6,亮度、对比度显著提高,获得的图像更加符合人类视觉,优于其他先进的低照度图像增强方法。