• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (05): 911-919.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于双通道门控复合网络的中文产品评论情感分析

董芃杉,张晶,金日泽   

  1. (天津工业大学计算机科学与技术学院,天津 300387)
  • 收稿日期:2021-07-05 修回日期:2022-01-10 接受日期:2023-05-25 出版日期:2023-05-25 发布日期:2023-05-16
  • 基金资助:
    国家自然科学基金(61806142)

Sentiment analysis of Chinese product reviews based on dual-channel gated composite network

DONG Peng-shan,ZHANG Jing,JIN Ri-ze   

  1. (School of Computer Science and Technology,Tiangong University,Tianjin 300387,China)
  • Received:2021-07-05 Revised:2022-01-10 Accepted:2023-05-25 Online:2023-05-25 Published:2023-05-16

摘要: 情感分析任务旨在理解和分类实体及其属性所表达的情感极性。在对中文文本进行分类时,现有的方法大多输入特征表示单一,导致模型不能充分学习语义信息。针对上述问题,提出了一种采用双通道门控复合网络的模型DGCN,将词向量和字向量作为双通道的输入,弥补了词向量由于分词不准确等问题造成的缺陷并丰富了语义信息;同时,使用门控机制改进了通道的结合方式,让字向量更好地辅助词向量学习文本的特征信息;在每个通道上都使用双向门限循环网络和卷积神经网络构成的复合网络,让二者优势互补,并添加Attention机制关注更有效的特征。实验结果表明,在中文产品评论情感分析方面,模型DGCN的准确率和F1值优于对照组的,且有良好的应用能力。

关键词: 情感分析, 词向量, 字向量, 卷积神经网络, 双向门限循环网络, 门控机制

Abstract: The sentiment analysis task aims to understand and classify the polarity of emotions that people express towards entities and their attributes. In the classification of Chinese text, most of the existing methods have single input feature representation, which makes the models unable to fully learn semantic information. To solve these problems, a dual-channel gated composite network model, named DGCN, is proposed, which uses word vector and character vector as the input of the two channels, which makes up for the defect of word vector caused by the inevitable inaccurate word segmentation and enriches the semantic information. At the same time, the gating mechanism is used to improve the combination mode of channels, so that char vector helps the word vector learn the characteristic information of text better. On each channel, a composite network composed of bidirectional gated recurrent unit network and convolutional neural network is used, so the advantages of the two channels are complementary. The attention mechanism is added to focus on more effective features. The experimental results show that the DGCN model has better accuracy and F1 value in sentiment analysis of Chinese product reviews than the counterparts, and has good application ability.


Key words: sentiment analysis, word vector, character vector, convolutional neural network, bidirectional gated recurrent unit network, gating mechanism ,