计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (05): 911-919.
董芃杉,张晶,金日泽
DONG Peng-shan,ZHANG Jing,JIN Ri-ze
摘要: 情感分析任务旨在理解和分类实体及其属性所表达的情感极性。在对中文文本进行分类时,现有的方法大多输入特征表示单一,导致模型不能充分学习语义信息。针对上述问题,提出了一种采用双通道门控复合网络的模型DGCN,将词向量和字向量作为双通道的输入,弥补了词向量由于分词不准确等问题造成的缺陷并丰富了语义信息;同时,使用门控机制改进了通道的结合方式,让字向量更好地辅助词向量学习文本的特征信息;在每个通道上都使用双向门限循环网络和卷积神经网络构成的复合网络,让二者优势互补,并添加Attention机制关注更有效的特征。实验结果表明,在中文产品评论情感分析方面,模型DGCN的准确率和F1值优于对照组的,且有良好的应用能力。