• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (01): 63-71.

• 计算机网络与信息安全 • 上一篇    下一篇

基于智能进化算法的可见水印对抗攻击

季俊豪1,张玉书1,赵若宇1,温文媖2,董理3   

  1. (1.南京航空航天大学计算机科学与技术学院,江苏 南京 211106;
    2.江西财经大学信息管理学院,江西 南昌 330032;3.宁波大学信息科学与工程学院,浙江 宁波 315000)

  • 收稿日期:2023-04-11 修回日期:2023-06-02 接受日期:2024-01-25 出版日期:2024-01-25 发布日期:2024-01-15
  • 基金资助:
    国家自然科学基金(62072237);南京航空航天大学研究生科研与实践创新计划(xcxjh20231603)

Adversarial visible watermark attack based on intelligent evolutionary algorithm

JI Jun-hao1,ZHANG Yu-shu1,ZHAO Ruo-yu1,WEN Wen-ying2,DONG Li3   

  1. (1.College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106;
    2.School of Information Management,Jiangxi University of Finance and Economics,Nanchang 330032;
    3.Faculty of Electrical Engineering and Computer Science,Ningbo University,Ningbo 315000,China)
  • Received:2023-04-11 Revised:2023-06-02 Accepted:2024-01-25 Online:2024-01-25 Published:2024-01-15

摘要: 随着公民版权意识的提高,越来越多含有水印的图像出现在生活中。然而,现有的研究表明,含有水印的图像会导致神经网络分类错误,这对神经网络的普及和应用构成了巨大的威胁。对抗训练是解决这类问题的防御方法之一,但是需要使用大量的水印对抗样本作为训练数据。为此,提出了一种基于智能进化算法的可见水印对抗攻击方法来生成高强度的水印对抗样本。该方法不仅能快速生成水印对抗样本,而且还能使其最大程度地攻击神经网络。此外,该方法还加入了图像质量评价指标来约束图像的视觉损失,从而使水印对抗样本更加美观。实验结果表明,所提方法相比于基准水印攻击方法时间复杂度更低,相比于基准黑盒攻击对神经网络攻击成功率更高。

关键词: 对抗攻击, 水印, 图像质量评价指标, 优化, 神经网络

Abstract: With the increasing awareness of citizen copyright, more and more images containing watermarks are appearing in daily life. However, existing research shows that images with watermarks can cause neural network misclassification, posing a significant threat to the popularization and application of neural networks. Adversarial training is one of the defensive methods to solve this problem, but it requires a large number of watermark adversarial samples as training data. To address this issue, this paper proposes a visible watermark adversarial attack method based on intelligent evolutionary algorithm to generate high-intensity watermark adversarial samples. This method can not only quickly generate watermark adversarial samples, but also maximize the attack on the neural network. In addition, this method incorporates image quality evaluation metrics to constrain the visual loss of the image, making the watermark adversarial samples more visually appealing. The comprehensive experimental results show that the proposed method has lower time complexity than the benchmark watermark attack method, and has a higher attack rate on neural networks compared to the benchmark black box attack.

Key words: adversarial attack, watermark, image quality evaluation, optimization, neural network