计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (10): 1843-1851.
陈清江,邵菲,王炫钧
CHEN Qing-jiang,SHAO Fei,WANG Xuan-jun
摘要: 针对现有去模糊方法不能有效地恢复图像精细细节的问题,提出了一种混合U型网络与Transformer的图像去模糊方法。首先,使用一个多尺度特征提取模块提取图像的浅层特征信息。然后,通过一个含逐级特征增强模块的层级嵌套U型子网络,在保留图像细节信息的同时获取图像深层特征信息。再次,构建了一个局部-全局残差细化模块,通过卷积神经网络和Swin Transformer之间的信息交互充分提取全局和局部信息,并实现特征信息的进一步细化。最后,使用一个1×1卷积层进行特征重建。所提方法在GoPro数据集上的实验结果显示,图像的峰值信噪比和结构相似度均值分别为32.92和0.964,均优于其他对比方法。实验结果表明,所提方法可以有效地去除模糊,重建出具有丰富细节的潜在清晰图像。