• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (10): 1843-1851.

• 图形与图像 • 上一篇    下一篇

混合U型网络与Transformer的图像去模糊

陈清江,邵菲,王炫钧   

  1. (西安建筑科技大学理学院,陕西 西安 710055) 

  • 收稿日期:2023-08-12 修回日期:2023-12-21 接受日期:2024-10-25 出版日期:2024-10-25 发布日期:2024-10-30
  • 基金资助:
    国家自然科学基金(12202332,61902304);陕西省自然科学基础研究计划(2021JQ-495)

Hybrid U-shaped network and Transformer for image deblurring

CHEN Qing-jiang,SHAO Fei,WANG Xuan-jun   

  1. (College of Science,Xi’an University of Architecture and Technology,Xi’an 710055,China)
  • Received:2023-08-12 Revised:2023-12-21 Accepted:2024-10-25 Online:2024-10-25 Published:2024-10-30

摘要: 针对现有去模糊方法不能有效地恢复图像精细细节的问题,提出了一种混合U型网络与Transformer的图像去模糊方法。首先,使用一个多尺度特征提取模块提取图像的浅层特征信息。然后,通过一个含逐级特征增强模块的层级嵌套U型子网络,在保留图像细节信息的同时获取图像深层特征信息。再次,构建了一个局部-全局残差细化模块,通过卷积神经网络和Swin Transformer之间的信息交互充分提取全局和局部信息,并实现特征信息的进一步细化。最后,使用一个1×1卷积层进行特征重建。所提方法在GoPro数据集上的实验结果显示,图像的峰值信噪比和结构相似度均值分别为32.92和0.964,均优于其他对比方法。实验结果表明,所提方法可以有效地去除模糊,重建出具有丰富细节的潜在清晰图像。

关键词: 图像去模糊, 细节信息, 层级嵌套U型子网络, Transformer, 多尺度特征

Abstract: To address the problem that existing deblurring methods cannot effectively restore fine details of images, an image deblurring method combining a U-shaped network and Transformer is proposed. Firstly, a multi-scale feature extraction module is used to extract shallow feature information from the image. Then, a hierarchical nested U-shaped subnet with a stepwise feature enhancement module is employed to obtain deep feature information while preserving image detail information. Next, a local-global residual refinement module is constructed, which fully extracts global and local information through information interaction between convolutional neural networks and Swin Transformer, and further refines the feature information. Finally, a 1×1 convolutional layer is used for feature reconstruction. The proposed method achieves a peak signal-to-noise ratio (PSNR) of 32.92 and a structural similarity index mean (SSIM) of 0.964 on the GoPro dataset, both outperforming other comparative methods. Experimental results demonstrate that the proposed method can effectively remove blur and reconstruct a potentially clear image with rich details.

Key words: image deblurring, detailed information, hierarchical nested U-shaped subnet, Transformer, multi-scale feature