• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (12): 2227-2252.

• 人工智能与数据挖掘 • 上一篇    下一篇

搜索结果多样化排序:新进展与展望

李金忠,刘伟东,陈盛博   

  1. (1.井冈山大学电子与信息工程学院,江西 吉安 343009;
    2.同济大学嵌入式系统与服务计算教育部重点实验室,上海 201804;3.河南大学人工智能与5G实验室,河南 开封 475004)

  • 收稿日期:2024-04-26 修回日期:2024-08-08 出版日期:2025-12-25 发布日期:2026-01-06
  • 基金资助:
    国家自然科学基金(62141203,62102133);井冈山大学科研基金(JAI4S2501); 同济大学嵌入式系统与服务计算教育部重点实验室开放课题 (ESSCKF2024-13); 电子数据管控与取证江西省重点实验室开放课题(20242BCC32027-8); 江西省教育厅科技计划(GJJ2201657); 江西省高层次紧缺海外人才计划(20232BCJ25026); 吉安市指导性科技计划(20244-029651); 开封市重大科技计划(21ZD011)

Diversified ranking of search result: Recent progress and prospects

LI Jinzhong,LIU Weidong,CHEN Shengbo   

  1. (1.College of Electronic and Information Engineering,Jinggangshan University,Ji’an 343009;
    2.The Key Laboratory of Embedded System and Service Computing,Ministry of Education,Tongji University,Shanghai 201804;
    3.Artificial Intelligence and 5G Laboratory,Henan University,Kaifeng 475004,China)
  • Received:2024-04-26 Revised:2024-08-08 Online:2025-12-25 Published:2026-01-06

摘要: 传统搜索引擎仅通过关键词查询以返回相关性搜索结果的排序无法满足用户日益多样化的信息需求。为此,搜索结果多样化排序技术应运而生,它在保持查询相关性的基础上,考虑不同文档的新颖性以及用户潜在的多样化查询意图,向用户呈现内容更为丰富全面的排序结果。随着深度学习技术的快速发展与突破,生成对抗网络GAN和图神经网络GNN等深度学习模型也被广泛应用于搜索结果多样化排序领域。虽然近期涌现了较多搜索结果多样化排序的最新研究成果,但较缺乏对新近提出的搜索结果多样化排序方法等相关研究的综述性工作。基于此,针对近5年来搜索结果多样化排序的研究进展进行了一个较为全面的综述。首先,回顾了搜索结果多样化排序的发展现状和相关综述,并阐述了搜索结果多样化排序问题的定义;其次,对近5年来搜索结果多样化排序的最新方法进行了分类,并重点分析了每个类别中的代表性方法;再次,对主流和新颖的搜索结果多样化评价指标进行了阐述与分析,并总结了现有的主要搜索结果多样化数据集,同时梳理和分析了最新搜索结果多样化排序方法的性能,以及总结了当前搜索结果多样化排序技术的应用进展;最后,对搜索结果多样化排序的未来研究方向进行了展望,以期为相关人员研究搜索结果多样化排序提供参考,并促进这一领域的进一步发展与创新。

关键词: 信息检索, 搜索结果多样化, 多样化排序, 排序学习, 深度学习

Abstract: Traditional search engines, which only return sorted relevant search results based on keyword queries, can no longer meet users’ increasingly diverse information needs. To address this, search result diversification ranking technology has emerged. On the basis of maintaining query relevance, this technology considers the novelty of different documents and users’ potential diverse query intents, presenting users with ranked results that are more comprehensive and rich in content. With the rapid development and breakthroughs of deep learning technology, deep learning models such as generative adversarial networks(GANs) and graph neural networks(GNNs) have also been widely applied in the field of search result diversification ranking. Although a large number of latest research achievements in search result diversification ranking have emerged recently, there is a lack of review work on newly proposed search result diversification ranking methods and other related studies. Based on this, this paper conducts a relatively comprehensive review of the research progress in search result diversification ranking over the past 5 years. Firstly, it reviews the development status of search result diversification ranking and related reviews, and expounds on the definition of the search result diversification ranking problem. Secondly, it classifies the latest methods of search result diversification ranking in the past 5 years, and focuses on analyzing the representative methods in each category. Thirdly, it elaborates on and analyzes mainstream and novel evaluation metrics for search result diversification, summarizes the existing major datasets for search result diversification, sorts out and analyzes the performance of the latest search result diversification ranking methods, and finally summarizes the application progress of current search result diversification ranking technologies. Furthermore, it looks forward to the future research directions of search result diversification ranking, aiming to provide references for relevant researchers in their studies on search result diversification ranking and promote further development and innovation in this field.


Key words: information retrieval, search result diversification, diversified ranking, learning to rank, deep learning ,