• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2026, Vol. 48 ›› Issue (1): 1-10.

• 高性能计算 • 上一篇    下一篇

一种基于神经网络的发送端均衡调优方法

申慧毅,李晋文,曹继军,赖明澈   

  1. (国防科技大学计算机学院,湖南 长沙 410073) 
  • 收稿日期:2024-06-17 修回日期:2024-09-25 出版日期:2026-01-25 发布日期:2026-01-25
  • 基金资助:
    国家自然科学基金(60873212);HPCL国家重点实验室基金(202101-02)

An optimization method for transmitter equalization based on neural network

SHEN Huiyi,LI Jinwen,CAO Jijun,LAI Mingche   

  1. (College of Computer Science and Technology,National University of Defense Technology,Changsha 410073,China)
  • Received:2024-06-17 Revised:2024-09-25 Online:2026-01-25 Published:2026-01-25

摘要: 随着数据中心和高性能计算机系统日益增长的数据传输带宽需求,高速互连网络数据传输的速率越来越快,而信号传输的链路也越来越复杂,对于高速串行通信SerDes信号的均衡技术也提出了更高的要求。目前接收端的均衡可以做到自适应,但是发送端前馈均衡FFE难以做到自适应,需要手动配置。针对这个问题,提出了一种基于神经网络的发送端前馈均衡系数的多目标调优方法,首先通过采集模拟仿真数据,利用神经网络对FFE的抽头系数与眼高和眼宽建模,再使用多目标优化算法对训练好的神经网络模型求解,能够快速得到最优的FFE电路抽头系数。与传统基于逐位模拟的FFE系数单目标优化方法相比,所提出的方法最高可以在眼图面积上实现约25%的提升,并且大大减少时间开销,提高优化效率。

关键词: 发送端, 前馈均衡, 抽头系数, 眼图, 神经网络, 多目标优化算法

Abstract: With the ever-increasing demand for data transmission bandwidth in data centers and high performance computer systems, the data transmission rates of high-speed interconnection networks are increasing, while the signal transmission links are becoming increasingly complex. This places higher requirements on the equalization technology for high-speed serial communication SerDes (Serializer/Deserializer) signals. Currently, adaptive equalization can be achieved at the receiver end, but adaptive feed forward equalization (FFE) at the transmitter end remains challenging and requires manual configuration. To address this issue, this paper proposes a multi-objective optimization method for the transmitter-side FFE coefficients based on neural networks. Firstly, simulation data is collected, and a neural network is utilized to model the relationship between the FFE tap coefficients and eye height/width. Subsequently, a multi-objective optimization algorithm is applied to solve the trained neural network model, enabling the rapid determination of optimal FFE circuit tap coefficients. Compared to the traditional single-objective optimization method for FFE coefficients based on bit-by-bit simulation, the proposed method achieves a maximum improvement of approximately 25% in eye diagram area, significantly reduces time overhead, and enhances optimization efficiency.


Key words: transmitter, feed forward equalization(FFE), tap coefficient, eye diagram, neural network, multi-objective optimization algorithm