• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (9): 1658-1668.

• 人工智能与数据挖掘 • 上一篇    下一篇

一种安全低功耗的无人机避障方法研究

万众1,陈任之1,张翔宇2,徐 实1,赵静月1,艾勇保1,杨智杰1,王蕾1   

  1. (1.国防科技创新研究院,北京 100071;2.飞腾信息技术有限公司,天津 300457)
  • 收稿日期:2024-10-08 修回日期:2024-11-01 出版日期:2025-09-25 发布日期:2025-09-22
  • 基金资助:
    国家自然科学基金 (62372461,62032001,62203457);国家国防科技工业局国防重点实验室项目(WDZC20235250112)

A safe and energy-efficient obstacle avoidance method for UAVs

WAN Zhong1 ,CHEN Renzhi1 ,ZHANG Xiangyu2 ,XU Shi1,ZHAO Jingyue1,AI Yongbao1,YANG Zhijie1 ,WANG Lei1   

  1. (1.Defense Innovation Institute,Academy of Military Science,Beijing 100071;
    2.Phytium Technology Co.,Ltd.,Tianjin 300457,China)

  • Received:2024-10-08 Revised:2024-11-01 Online:2025-09-25 Published:2025-09-22

摘要: 为实现高速敏捷自主飞行,需要提高无人机续航时间、降低指令传递延迟和增强无人机快速反应能力。同时,在复杂场景下,无人机对障碍物检测信息依赖性强,各种误差会降低其飞行安全性。基于以上问题,通过预定义规则的局部规划避障方法做出避障策略,分别基于卡尔曼滤波算法与贝叶斯线性回归模型对避障方法进行优化,实验结果表明,基于贝叶斯线性回归模型的方法比基于卡尔曼滤波算法的方法预测速度快2.8倍,不仅提高了预测效率,还保证了较高的预测精度和稳定性。同时,为得到既低功耗又能保证安全的避障速度,将避障速度作为决策变量,续航时间与置信度作为目标向量,通过寻找膝点的方式求得续航时间与置信度折中损耗最小的点,提供最优的避障速度。最后,在无人机避障环境中,对改进后的基于局部规划的避障方法进行仿真验证。仿真结果显示,无人机能够对动态障碍物做出及时躲避,与相同实验环境的避障方法相比,总时间延迟平均降低了约7%。

关键词: 无人机避障;轨迹预测;脉冲神经网络;贝叶斯理论, 多目标优化 ,

Abstract: To achieve high-speed,agile,and autonomous flight,it is necessary to extend the UAV endurance,reduce command transmission delay,and enhance the UAV's quick response capability.Meanwhile,in complex scenarios,UAVs highly depend on obstacle detection information,and various errors will reduce UAV flight safety.Based on the above problems,an obstacle avoidance strategy is formulated through a local planning obstacle avoidance method with predefined rules.The obstacle avoidance method is optimized using Kalman filtering and Bayesian linear regression model respectively.Experimental results show that the Bayesian linear regression-based method has a prediction speed 2.8 times faster than the Kalman filtering-based method,which not only improves prediction efficiency but also ensures high prediction accuracy and stability.Additionally,to obtain both low-power and safe obstacle avoidance speeds,the obstacle avoidance speed is set as the decision variable,and the endurance time and confidence  are set as the target vectors.The optimal obstacle avoidance speed is obtained by finding the knee point to minimize the trade-off loss between endurance time and confidence level.Finally,the improved local planning-based obstacle avoidance method is verified in the UAV obstacle avoidance environment.The results show that this system can promptly avoid dynamic obstacles,and the total time delay is reduced by approximately 7% on average compared with the obstacle avoidance method  under the same experimental conditions.


Key words: UAV obstacle avoidance;trajectory prediction;spiking neural network;Bayesian theory;multi-objective optimization ,