• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2010, Vol. 32 ›› Issue (1): 80-82.doi: 10.3969/j.issn.1007130X.2010.

• 论文 • 上一篇    下一篇

局部保持特征变换算法综述

  

  1. (徐州师范大学计算机科学与技术学院,江苏 徐州 221116)
  • 收稿日期:2008-08-16 修回日期:2008-11-16 出版日期:2010-01-18 发布日期:2010-01-18
  • 通讯作者: 张笃振 E-mail:zhduzhen@xznu.edu.cn
  • 作者简介:张笃振 (1967),男,江苏徐州人,硕士,研究方向为图像处理、图像检索和模式识别。

A General Survey of Locality  Preserving Feature Transformation

  1.  (School of Computer Science and Technology,Xuzhou Normal University,Xuzhou 221116,China)
  • Received:2008-08-16 Revised:2008-11-16 Online:2010-01-18 Published:2010-01-18

摘要:

在机器学习研究领域,人们提出了很多特征变换算法。这些算法的思路是把数据从原始特征空间映射到新的特征空间,从而改善数据的表示或区分能力。所用技术主要包括特征向量或谱方法、最优化理论、图论等。算法的步骤都是:(1)构造原始数据及关系的结构;(2)定义目标函数;(3)运用优化理论使目标函数最优,求得问题的解。本文给出了两类常用的局部保持特征变换主要算法步骤,分析了算法优缺点,这使我们对特征变换的研究有较全面的了解。

关键词: 特征变换, PCA, LLE, LE, ISOMAP, NPE, LPP, LDE

Abstract:

Many feature transform methods have been proposed for the machine learning research area. They generally try to project the available data from the original feature space to a new feature space so that those data are more representative, or discriminative if they are intended to be assigned with some specific labels. General techniques mainly involve the Eigenvector or Spectral method, the optimization theories (Linear or Convex), the graph theories,and so on. It is generally (1) to construct a structure for the original data and their correlations, (2) to define an objective function to evaluate the purpose of the projection or the characteristics of the new space, (3) to apply optimization theories to optimize the objective function to get the solution to the problem. This paper gives two classical methods of locality preserving transformation. By analyzing their key points together with their deficiencies, we get a general view of the currently most critical problems.

Key words: feature transformation;PCA;LLE;LE;ISOMAP;NPE;LPP;LDE

中图分类号: