• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2010, Vol. 32 ›› Issue (12): 53-56.doi: 10.3969/j.issn.1007130X.2010.

• 论文 • 上一篇    下一篇

灰度图像最大熵分割方法的改进

郑丽萍1 ,李光耀2,姜华1   

  1. (1.聊城大学计算机学院,山东 聊城 252059;2.同济大学CAD研究中心,上海 201804)
  • 收稿日期:2009-11-17 修回日期:2010-03-25 出版日期:2010-12-25 发布日期:2010-12-25
  • 通讯作者: 郑丽萍
  • 作者简介:郑丽萍(1979),女,山东聊城人,博士,讲师,研究方向为医学图像三维重建、CAD/CAE、虚拟 现实等;李光耀,教授,博士生导师,研究方向为图形图像、CAD/CAE/CAM、虚拟现实、城市仿真等;姜华,硕士,副教授,研究方向为人工智能等。
  • 基金资助:

    国家自然科学基金资助项目(60771065);聊城大学重点科研项目(X0810015)

Improvement of the Gray Image Maximum Entropy Segmentation Method

ZHENG Liping1,LI Guangyao2,JIANG Hua1   

  1. (1.School of Computer Science,Liaocheng University,Liaocheng 252059;
    (2.CAD Research Center,Tongji University,Shanghai 201804,China)
  • Received:2009-11-17 Revised:2010-03-25 Online:2010-12-25 Published:2010-12-25

摘要:

传统的最大熵分割方法只考虑了图像的灰度概率,忽略了对应的灰度值。为了充分利用灰度图像的
灰度信息和空间信息,改进了传统的二维灰度直方图,生成二维差值属性灰度直方图。另外,改进了灰度
均值和二维熵的计算方法。在计算熵时,以二维差值属性灰度直方图为基础,用空间信息值来代替灰度概
率,生成二维差值属性信息值熵。在实验中,对多张不同的灰度图像分别用改进的最大熵方法与传统的最
大熵分割方法进行分割,并对分割结果进行比较分析。实验结果表明,改进的最大熵分割方法能有效地分
割灰度图像及噪声图像,有很强的抗噪声能力,并能产生清晰的分割结果。

关键词: 二维直方图, 熵, 灰度信息, 图像分割, 灰度概率

Abstract:

In the traditional maximum entropy threshold segmentation methods,the gray
probability of image is used and the corresponding gray value is ignored. In order to
adequately utilize the gray information and spatial information of the gray image,the
traditional 2D gray histogram is improved and the 2D Dvalue attribute gray histogram is
formed. Otherwise,the computation method for the average gray value and the 2D entropy is
improved.We use the spatial information value as a substitute for the gray probability to
compute the entropy.The computation of the entropy is based on the Dvalue attribute gray
histogram and creates the spatial different attribute information value entropy(SDAIVE). In
experiments,many different gray images are segmented with the improved maximum entropy
method and the traditional maximum entropy method,and the segmentation results are
compared.The experimental results show that improved threshold method can effectively
segment gray images and noise images. This method has strong antinoise capability and
clear segmentation results.

Key words: 2D histogram;entropy;gray information;image segmentation;gray probability