• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2010, Vol. 32 ›› Issue (2): 131-134.doi: 10.3969/j.issn.1007130X.2010.

• 论文 • 上一篇    下一篇

极限学习机与支持向量机在储层渗透率预测中的对比研究

  

  1. (西安石油大学计算机学院,陕西 西安 710065)
  • 收稿日期:2009-07-07 修回日期:2009-09-27 出版日期:2010-01-25 发布日期:2010-01-26
  • 通讯作者: 潘华贤 E-mail:panhuaxian@gmail.com
  • 作者简介:潘华贤(1984),女,陕西西安人,硕士生,研究方向为智能油藏工程、神经网络、数据挖掘、机器学习和软计算方法;程国建,博士,教授,研究方向为计算智能、模式识别、智能油藏工程、生物特征识别、商务智能等;蔡磊,硕士生,研究方向为智能油藏工程、图像处理、机器学习和模式识别。

Comparison of the Extreme Learning Machine  with the Support Vector Machine for  Reservoir Permeability Prediction

  1. (School of Computer Science,Xi’an Shiyou University,Xi’an 710065,China)
  • Received:2009-07-07 Revised:2009-09-27 Online:2010-01-25 Published:2010-01-26

摘要:

极限学习机ELM是一种简单易用、有效的单隐层前馈神经网络SLFNs学习算法。传统的神经网络学习算法(如BP算法)需要人为设置大量的网络训练参数,并且很容易产生局部最优解。极限学习机只需要设置网络的隐层节点个数,在算法执行过程中不需要调整网络的输入权值以及隐元的偏置,并且产生唯一的最优解,因此具有学习速度快且泛化性能好的优点。本文将极限学习机引入到储层渗透率的预测中,通过对比支持向量机,分析其在储层渗透率预测中的可行性和优势。实验结果表明,极限学习机与支持向量机有近似的预测精度,但在参数选择以及学习速度上极限学习机具有明显的优势。

关键词: 极限学习机, 前馈神经网络, 渗透率, 支持向量机, 预测模型

Abstract:

Extreme Learning Machine (ELM) is an easytouse and effective learning algorithm of singlehidden layer feedforward neural networks (SLFNs). The classical learning algorithm in neural networks, e.g.back propagation, requires to set several userdefined parameters and may produce the local minimum. However, the extreme learning machine only requires to set the number of hidden neurons and the activation function. It does not need to adjust  the input weights and hidden layer biases during the implementation of the algorithm, and it produces only one optimal solution. Therefore, ELM has the advantages of fast learning speed and good generalization performance. In this paper, ELM is introduced in predicting reservoir permeability, and by comparing with SVM, we analyse its feasibility and advantages in reservoir permeability prediction. The experimental results show that ELM has similar accuracy compared to SVR, but it has obvious advantages in parameter selection and learning speed.

Key words: extreme learning machine;feedforward neural network;permeability;support vector machine;prediction model

中图分类号: