• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2010, Vol. 32 ›› Issue (5): 105-108.doi: 10.3969/j.issn.1007130X.2010.

• 论文 • 上一篇    下一篇

基于LevenbergMarquardt神经网络的复合材料力学性能预测

汤嘉立,柳益君,蔡秋茹,吴访升   

  1. (江苏技术师范学院计算机工程学院,江苏 常州 213001)
  • 收稿日期:2009-11-15 修回日期:2010-02-09 出版日期:2010-04-28 发布日期:2010-05-11
  • 通讯作者: 汤嘉立 E-mail:tangjl@jstu.edu.cn
  • 作者简介:汤嘉立(1980),男,江苏常州人,硕士,讲师,研究方向为计算机仿真与人工智能。
  • 基金资助:

    江苏省高校自然科学基金资助项目(08KJB430003)

Prediction of Composite Mechanical Properties Based on the LevenbergMarquardt Neural Network

TANG Jiali,LIU Yijun,CAI Qiuru,WU Fangsheng   

  1. (School of Computer Engineering,Jiangsu Teachers University of Technology,Changzhou 213001,China)
  • Received:2009-11-15 Revised:2010-02-09 Online:2010-04-28 Published:2010-05-11
  • Contact: TANG Jiali E-mail:tangjl@jstu.edu.cn

摘要:


摘要:本文提出将基于LevenbergMarquardt算法的前向多层神经网络用于预测复合材料的力学性能,该方法通过利用二阶导数信息,可以提高收敛速度和增强网络的泛化性能。以麦秆增强复合板材为例,建立成型温度、成型压力、纤维含量和保温时间四个影响因子到拉伸强度和冲击韧性的非线性映射。仿真结果表明,所建神经网络模型具有较好的学习和泛化能力,在预测力学性能中效果较好。最后利用该模型优化模压成型的工艺参数,找出最佳工艺参数的范围。

关键词: 神经网络, 麦夸特算法, 预测模型, 力学性能

Abstract:

The paper proposes a method of applying the feedforward artificial neural network with the LevenbergMarquardt training algorithm for the problem of composite mechanical properties prediction. By using the second derivative information, the network convergence speed is promoted and the generalization performance is enhanced. Taking the wheat strawreinforced composite for instance, the nonlinear mapping is set up from four influence factors (mold temperature, mold pressure, fibre content and time ) to its tensile strength and toughness. The simulation results show the founded network model has preferable learning and generalization capabilities, which performs effectively in predicting composite mechanical properties. Besides, the model is used to optimize the process parameters of compression molding and find the range of the best parameters.

Key words: neural network;LevenbergMarquardt algorithm;predicting model;mechanical property

中图分类号: