• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2011, Vol. 33 ›› Issue (1): 150-156.doi: 10.3969/j.issn.1007130X.2011.

• 论文 • 上一篇    下一篇

网络社区中的意见领袖特征分析

肖宇,许炜,夏霖   

  1. (华中科技大学电子与信息工程系,湖北 武汉 430074)
  • 收稿日期:2010-01-20 修回日期:2010-04-20 出版日期:2011-01-25 发布日期:2011-01-25
  • 通讯作者: 肖宇 E-mail:xiaoyu@mail.hust.edu.cn
  • 作者简介:肖宇(1979),男,湖北武汉人,博士,研究方向为社会网络测量、网络用户行为分析。许炜(1977),男,湖北武汉人,博士,讲师,研究方向为Web 服务事务研究、Web数据挖掘、社会网络行为分析与测量。夏霖(1987),女,湖北咸宁人,硕士,研究方向为社会网络行为分析与测量。
  • 基金资助:

    “十一五”科技支撑计划重点项目(2006BAK11B00)

A Feature Analysis of the Opinion Leader in OnLine Communities

XIAO Yu,XU Wei,XIA Lin   

  1. (Department of Electronics and Information Engineering,
    Huazhong University of Science and Technology,Wuhan 430074,China)
  • Received:2010-01-20 Revised:2010-04-20 Online:2011-01-25 Published:2011-01-25

摘要:

本文通过社会网络分析方法识别网络社区中的意见领袖。首先对意见领袖存在的人际关系网络结构特征进行分析,对比论坛、博客和问答网络之间的区别,提出基于无向、有权重网络模型更能真实准确地识别意见领袖。并基于该网络模型研究和分析了网络论坛结构特征,通过测量其小世界和无标度的复杂网络特征,定量分析意见领袖存在的社会性根源。其次提出了基于无向、有权重网络下的PageRank算法,并对比前人提出多种意见领袖识别算法,以某论坛四年历史数据实证了算法的有效性。最后对识别结果进行深入分析,并研究了意见领袖同活跃版块之间的关系,发现通过覆盖少量版块即可覆盖绝大部分意见领袖。

关键词: 复杂网络, 网络社区, 意见领袖, PageRank

Abstract:

We use a method of social network analysis to indentify opinion leaders in social networks. First of all we analyze the characteristics of the social networks of online communities, consider the difference between BBS, blogosphere and Q&A network, and propose that undirected weighted network models will enhance the identification accuracy of opinion leaders. Then, we analyze the features of social networks. We validate that BBS is smallworld and scalefree, and we make a quantitative analysis of the social background of opinion leaders. We also propose a PageRank algorithm based on undirected weighted networks, and test several algorithms proposed before our experiment. We use four years’ data from a BBS, and test these algorithms. Finally, we make  a profound analysis and find the relationship between opinion leaders and boards, and the result shows that we can find a majority of opinion leaders from covering few boards.

Key words: complex networks;online community;opinion leader;PageRank