• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2012, Vol. 34 ›› Issue (3): 91-95.

• 论文 • 上一篇    下一篇

自然场景中多类目标识别的算法研究

吴士林1,2,3,4,朱枫1,3,4   

  1. (1.中国科学院沈阳自动化研究所,辽宁 沈阳 110016;2.中国科学院研究生院,北京100049;
    3.中国科学院光电信息处理重点实验室,辽宁 沈阳 110016;
    4.辽宁省图像理解与视觉计算重点实验室,辽宁 沈阳 110016)
  • 收稿日期:2011-05-04 修回日期:2011-08-21 出版日期:2012-03-26 发布日期:2012-03-25

MultiClass Object Recognition in Natural Scenes

WU Shilin1,2,3,4,ZHU Feng1,3,4   

  1. (1.Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016;
    2.Graduate School,Chinese Academy of Sciences,Beijing 100049;
    3.Key Laboratory of OpticalElectronics Information Processing,
    Chinese Academy of Sciences,Shenyang 110016;
    4.Key Laboratory of Image Understanding and Computer Vision,Shenyang 110016,China)
  • Received:2011-05-04 Revised:2011-08-21 Online:2012-03-26 Published:2012-03-25

摘要:

为了实现复杂自然场景中多类目标的识别与分割,本文利用条件概率模型(CM)对目标特征进行建模,融合了纹理特征、纹理环境特征和位置特征,并采用场景类别对各类目标间的相互约束关系进行建模,在此基础上研究基于场景类别的条件概率模型(sCM)在多类目标识别与分割中的应用。本文选用Oliva & Torralba数据库对模型进行实验并与国外其他方法进行了比较。实验结果表明, 该算法在多类目标识别与分割中取得很好的结果,在提高总体识别率的同时提高了物体边缘部分识别与分割的正确率,更有效地提高了视觉效果。

关键词: 目标识别, 多类, 图像分割, Jointboost算法

Abstract:

In this paper, a conditional model (CM) is used to incorporate different feature potentials including texture, texture environment and location features of objects for multiclass object recognition and segmentation in complex natural images. Besides, we model the relationship between different objects by the scene of images and propose a new scenebased conditional model called the sCM model. We investigate the performance of our model in the classbased pixelwise segmentation of images on the Oliva & Torralba database and compare its result with other methods. The results show that our themebased RCRF model significantly improves the accuracy of objects in the whole database. More significantly, a large perceptual improvement is gained, i.e. the details of different objects are correctly labeled.

Key words: object recognition;multiclass;image segmentation;Jointboost