• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2012, Vol. 34 ›› Issue (5): 112-115.

• 论文 • 上一篇    下一篇

双参数Bézier曲线的升二次扩展

姜岳道,植 物,白根柱   

  1. (内蒙古民族大学数学学院,内蒙古 通辽 028043)
  • 收稿日期:2011-03-15 修回日期:2011-06-20 出版日期:2012-05-25 发布日期:2012-05-25

Elevating Secondary Extension with the Two Shape Parameters Bézier Curve

JIANG Yuedao,ZHI Wu,BAI Genzhu   

  1. (School of Mathmatics,Inner Mongolia University for Nationalities,Tongliao 028043,China)
  • Received:2011-03-15 Revised:2011-06-20 Online:2012-05-25 Published:2012-05-25

摘要:

本文以二次Bernstein基函数为例,首次提出了含双参数基函数的新扩展——αβQ—Bernstein基函数,此类基函数具有新的特点,即基函数的扩展次数一次性升高两次,且包含了二次多项式和带一个参数的三次多项式基函数的所有性质。基于这组基函数定义了αβQ—Bézier曲线,该曲线也含有参数,具有形状可调性,当α与β取某些值时曲线能达到C4连续或在某个端点处C0连续。最后与含两个参数的升一次Bézier曲线进行比较,该曲线具有调节范围广、灵活性更强的优势。

关键词: ernstein基函数, &alpha, &beta, Q&mdash, Bé, zier曲线, 升二次, C4连续, 形状参数

Abstract:

We difine several new quartic polynomial basis functions named the  αβQBernstein basis functions and they all have two shape parameters α and β for the quadratic Bernsteins basic function.These basis functions have a new feature and the functions’ degrees have been elevated secondary once. Above all, these new basis functinons contain all the properties of the quadratic polynomial basis function and the cubic polynomial basis function which have two shape parameters. Based on these basis functions , accordingly ,we define the αβQ—Bézier curve which not only contains two shape parameters α and β,but also have  better ingenuity.Especially,the curves are  C0continuity in an endpoint and C4continuity when α or β gets a certain value.Compared with the curve of elevating once ,the new curve have an important property of wide modulatory area and good feasibility.

Key words: Bernstein basic functions;αβQ—Bézier curve;elevating secondary;C4continuity;shape parameter