• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2013, Vol. 35 ›› Issue (5): 130-135.

• 论文 • 上一篇    下一篇

一类局部可调的三次代数三角插值样条

杨炼1,2,李军成1,匡小兰3   

  1. (1.湖南人文科技学院数学系,湖南 娄底 417000;2.江苏大学图形技术研究所,江苏 镇江 212013;
    3.湖南工业大学计算机与通信学院,湖南 株洲 412008)
  • 收稿日期:2011-08-11 修回日期:2011-11-20 出版日期:2013-05-25 发布日期:2013-05-25
  • 基金资助:

    湖南省教育厅资助科研项目(11C0707)

A family of locally adjustable cubic
algebraictrigonometric interpolation spline       

YANG Lian1,2,LI Juncheng1,KUANG Xiaolan3   

  1. (1.Department of Mathematics,Hunan Institute of Humanities,Science and Technology,Loudi 417000;
    2.Institute of Graphics Technology,Jiangsu University,Zhenjiang 212013;
    3.College of Computer Communication,Hunan University of Technology,Zhuzhou 412008,China)
  • Received:2011-08-11 Revised:2011-11-20 Online:2013-05-25 Published:2013-05-25

摘要:

在空间Ω=span {1, t, sint, cost, sin2t, cos2t}中提出了一种新的带形状参数的三次代数三角插值样条,该样条具有许多与三次B样条类似的性质。所构造的曲线曲面无需解方程组或插入某些节点即可直接插值某些控制顶点。曲线能精确表示直线段、椭圆(圆)弧、抛物线弧以及圆柱螺旋、三角函数曲线等一些超越曲线,相应的张量积曲面能精确表示一些二次曲面和超越曲面,如球面、圆柱面和螺旋柱面等。通过改变基函数中的全局参数的取值可整体调节曲线曲面的形状,并利用奇异混合技术在三次代数三角插值样条中引入局部参数,使曲线曲面的形状能局部调节。几何造型实例表明,三次代数三角插值样条可作为几何造型的一种新的有效模型。

关键词: 三次B样条, 代数三角样条, 插值, 形状参数, 奇异混合

Abstract:

A new kind of cubic algebraic trigonometric interpolation splines with a shape parameter over space Ω=span {1, t, sint, cost, sint2t, cos2t} was presented. The interpolation splines have many similar properties with cubic B-splines. The curves and surfaces can interpolate directly some control points without solving system of equations or inserting some additional control points. The curves can be used to exactly represent straight line segment, circular arc, elliptic arc, parabola and some transcendental curves such as circular helix. The corresponding tensor product surfaces can also precisely represent some quadratic surfaces and transcendental surfaces, such as sphere, cylindrical surfaces and helix tube. The shape of the curves and surfaces can be modified globally through changing the values of the parameters. Furthermore, the local parameters are introduced in the splines using the singular blending technique. Examples are given to illustrate that the splines can be used as a novel efficient model for geometric design in the fields of CAGD.

Key words: cubic B-splines;algebraictrigonometric spline;interpolation;shape parameter;singular blending