• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2012, Vol. 34 ›› Issue (9): 143-148.

• 论文 • 上一篇    下一篇

基于“不可区分相似优势”关系的定序分类模型

钱慎一,李红婵   

  1.  (郑州轻工业学院计算机与通信工程学院,河南 郑州 450002)
  • 收稿日期:2012-04-13 修回日期:2012-06-20 出版日期:2012-09-25 发布日期:2012-09-25

Sequencing Classification Model Based on IndiscernibilitySimilarityDominance Relation

QIAN Shenyi,LI Hongchan   

  1. (School of Computer and Communication Engineering,
    Zhengzhou University of Light Industry,Zhengzhou 450002,China)
  • Received:2012-04-13 Revised:2012-06-20 Online:2012-09-25 Published:2012-09-25

摘要:

经典粗糙集方法的优点在于能够通过不可区分关系来获取知识,但其不足之处在于不能够处理定性属性、定量属性以及准则属性同时出现的定序分类问题。为此,本文对经典粗糙集进行扩展并提出了一个新的决策分析方法,该方法采用“不可区分相似优势”关系来代替经典粗糙集中的不可区分关系以获取知识的粗糙近似,从而不但能够解决上述定序分类问题,而且还能处理决策表中可能存在的不一致现象。实例验证了该方法的有效性与优越性。

关键词: 粗糙集, 定序分类问题, 不可区分相似优势&rdquo, 关系, 决策分析方法

Abstract:

The classic rough set theory can solve problems by means of indiscernibility relation,but it is powerless to resolve the sequencing classification problems that contain qualitative attributes and quantitative attributes as well as criterias.In view of this situation,thelassic rough set theory is firstly extended,and then,a decision analysis method based on the extended rough set theory is proposed.This method replaces the indiscernibility relation in the original rough set theory by the "indiscernibilitysimilaritydominance" relation and obtains rough approximation of knowledge.The effectiveness and superiority of the method are demonstrated by a real example.

Key words: rough set;sequencing classification problem;indiscernibilitysimilaritydominance relation;decision analysis method