• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (03): 502-508.

• 人工智能与数据挖掘 • 上一篇    下一篇

一种基于span的实体和关系联合抽取方法

余杰1,纪斌1,吴宏明2,任意3,李莎莎1,马俊1 ,吴庆波1   

  1. (1.国防科技大学计算机学院,湖南 长沙 410073;
    2.中央军委装备发展部装备项目管理中心,北京 100034;3.陆军项目管理中心,北京 100071)

  • 收稿日期:2020-11-26 修回日期:2020-12-15 接受日期:2022-03-25 出版日期:2022-03-25 发布日期:2022-03-24
  • 基金资助:

A span-based joint entity and relation extraction method

YU Jie1,JI Bin1,WU Hong-ming2,REN Yi3,LI Sha-sha1,MA Jun1,WU Qing-bo1   

  1. (1.College of Computer Science and Technology,National University of Defense Technology,Changsha 410073;
    2.Equipment Project Management Center of Equipment Development Department,Central Military Commission,Beijing 100034;
    3.Project Management Center of Army,Beijing 100071,China)
  • Received:2020-11-26 Revised:2020-12-15 Accepted:2022-03-25 Online:2022-03-25 Published:2022-03-24

摘要: 基于span的联合抽取模型在命名实体识别和关系抽取上取得了优异的效果。这些模型将文本span作为候选实体,并将span元组视为候选关系元组。span的语义表示在实体识别和关系分类中共享。然而现有基于span的模型无法很好地捕获这些候选实体和关系的语义,为了解决这些问题,提出了一种融合attention机制的span的联合抽取模型。特别地,attention用于计算相关语义表示,包括span特定特征语义表示和句子上下文的语义表示。实验结果表明,所提出的模型优于以前的模型,并在ACE2005、CoNLL2004和ADE 3个基准数据集上达到了当前最优的结果。

关键词: span, 实体识别, 关系抽取, 联合抽取

Abstract: Span-based joint extraction models have achieved excellent results in named entity recognition and relation extraction. These models regard text spans as candidate entities and span tuples as candidate relation tuples. span semantic representations are shared in both entity recognition and relation extraction, while existing models cannot well capture semantics of these candidate entities and relations. To address these problems, a span-based joint extraction framework with attention-based semantic re- presentations is proposed. Specially, attentions are utilized to calculate semantic representations, includ- ing span-specific and contextual ones. Experiments show that our model outperforms previous systems and achieves state-of-the-art results on ACE2005, CoNLL2004 and ADE.

Key words: span, entity recognition, relation extraction, joint extraction