• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2015, Vol. 37 ›› Issue (03): 566-575.

• 论文 • 上一篇    下一篇

图割与非线性统计形状先验的图像分割

辛月兰1,2,张晓华3,汪西莉1   

  1. (1.陕西师范大学计算机科学学院,陕西 西安 710062;2.青海师范大学物理系,青海 西宁 810008,中国;3.广岛工业大学情报学部智能情报系统系,广岛 7315193,日本)
  • 收稿日期:2013-11-20 修回日期:2014-03-13 出版日期:2015-03-25 发布日期:2015-03-25
  • 基金资助:

    国家自然科学基金资助项目(41171338,61462072);教育部“春晖计划”资助项目(Z2012100)

Image segmentation based on graph
cuts and nonlinear statistical shape prior  

XIN Yuelan1,2,ZHANG Xiaohua3,WANG Xili1   

  1. (1.College of Computer Science,Shaanxi Normal University,Xi’an 710062,China;2.Department of Physics,Qinghai Normal University,Xining 810008,China;3.Department of Intelligent Information System,Hiroshima Institute of Technology,Guangdao 7315193,Japan)
  • Received:2013-11-20 Revised:2014-03-13 Online:2015-03-25 Published:2015-03-25

摘要:

提出一种图割与非线性统计形状先验的图像分割方法。首先,在输入空间对输入的形状模板进行配准,得到训练集;其次,采用非线性核函数将目标形状先验映射到特征空间进行主成分分析,获取其投影形状,将此投影形状映射回原输入空间得到目标的平均形状,构成新的能量函数;第三,通过自适应调整形状先验项的权值系数,使能量函数的形状先验项自适应于被分割的图像;最后,用Graph Cuts方法最小化能量函数完成图像分割。实验结果表明,该方法不仅能准确分割与形状先验模板有差别的图像,而且对目标有遮挡或污染的图像也有较好的分割效果,提高了分割效率。

关键词: 核主成分分析, 平均形状, 概率图, 图像分割

Abstract:

An image segmentation method based on graph cuts and nonlinear statistical shape prior is proposed. Firstly, the input shape templates are registered in the input space, and the training sets are obtained. Secondly, the target shape prior is mapped to a feature space with principal component analysis by using a nonlinear kernel function, and the projected shape is obtained, which is mapped back to the original input space to obtain the average shape of the target, and thus forms a new energy function. Thirdly, through the weight coefficient selfadaptive adjustment of the shape prior term, the shape prior term of the energy function becomes adaptive to the image to be segmented. Finally, the image segmentation is accomplished by graph cuts technology so as to minimize the energy function. Experimental results show that the proposed method can not only correctly segment the images which are different than the shape prior templates, but also has better segmentation effect for the object images with occlusion and pollution.  Moreover, the proposed method can improve the quality of image segmentation.

Key words: kernel principle component analysis;average shape;probability map;image segmentation