• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

基于测地距离的KPCA人脸识别

林克正,魏颖,钟岩,李慧   

  1. (哈尔滨理工大学计算机科学与技术学院,黑龙江 哈尔滨 150080)
  • 收稿日期:2015-08-17 修回日期:2015-09-30 出版日期:2016-09-25 发布日期:2016-09-25
  • 基金资助:

    国家自然科学基金(60873019);黑龙江省教育厅科学技术研究项目(11551087)

KPCA face recognition based on geodesic distance   

LIN Ke-zheng,WEI Ying,ZHONG Yan,LI Hui   

  1. (School of Computer Science and Technology,Harbin University of Science and Technology,Harbin 150080,China)
  • Received:2015-08-17 Revised:2015-09-30 Online:2016-09-25 Published:2016-09-25

摘要:

针对人脸检测数据集中的信息均为高维特征向量且人脸识别易受表情变化影响等问题,本文提出一种基于测地距离的KPCA人脸识别方法,该方法利用非线性方法提取主成分。先采用KPCA方法把人脸数据映射到高维空间,进而在高维空间中提取人脸的主成分,其中核函数为多项式核函数;然后引入测地距离替换原来的欧氏距离进行相似度量,其能更准确地测量出两像素点间的实际距离,使得人脸识别率受表情变化影响小。该方法不但可以实现降维,而且还能达到有效提取特征的目的。在ORL人脸库上的实验结果表明,该方法的识别率明显优于PCA、KPCA等方法的识别率。

关键词: 人脸识别, 特征提取, 主成分分析, 核函数, 测地距离

Abstract:

Aiming at the problem that the information of the face detection data is high eigenvector and face recognition is easily affected by expression changes, we propose a kernel principle component analysis (KPCA) face recognition method based on geodesic distance. We extract principal components by the nonlinear method. First, we adopt the KPCA method to map face data to the high dimensional space, and then principal components of the face are extracted in the high dimensional space, where the kernel function is a polynomial kernel. Finally, geodesic distance is introduced to replace the original Euclidean distance as the similarity measure, which can more accurately measure the actual distance between two points, and face recognition rate is less affected by expression changes as well. The proposed method cannot only achieve dimension reduction, but also achieve effective  data extraction. Experiments on the ORL face database show that the recognition rate of the proposed method is superior to that of the PCA and the KPCA.

Key words: face recognition, feature extraction, PCA, kernel function, geodesic distance