摘要:
在解决高维向量的搜索问题方法中,基于子向量距离索引的向量匹配算法iSVD拥有较好的搜索精度和效率。但是,该算法计算复杂度仍然较高,在实际应用中会受到限制。针对该问题,引入关键维选取方法,对iSVD算法进行改进。该方法首先将特征向量划分为多个子向量;再通过某种筛选方法,选出部分子向量代替原特征向量,进而创建索引值;最后利用索引值进行最近邻搜索。该方法能够将相似性较小的特征向量进行有效的区分,且可以进一步缩小最近邻搜索的搜索范围。实验结果表明,该算法能够在保持良好搜索精度的同时,提高匹配的正确率,缩短匹配时间,具有较好的实用性。