摘要:
水对光的吸收和散射效应降低了水下图像的质量,水下图像的可视范围受到限制,复杂水下场景下的鲁棒性和精确性问题使得特征提取与匹配成为一项具有挑战性的任务。为了更好地配准水下图像,提出了一种改进CNN-RANSAC的水下图像特征配准方法,首先通过基于深度卷积神经网络的水下图像增强方法对水下图像进行增强预处理,通过水下图像分类数据集迁移学习训练VGGNet-16网络框架,利用修改后的网络框架进行特征提取,生成鲁棒的多尺度特征描述符与特征点,经过特征粗匹配与动态内点选择,使用改进的RANSAC方法剔除误匹配点。在大量水下图像数据集上进行了充分的特征提取和特征匹配实验,与基于SIFT和SURF的配准方法相比,该方法能够检测到更多的特征点,实现了匹配正确率的大幅度提高。
盛明伟,唐松奇,万磊,秦洪德,李俊. 基于改进CNN-RANSAC的水下图像特征配准方法[J]. 计算机工程与科学.
SHENG Ming-wei,TANG Song-qi,WAN Lei,QIN Hong-de,LI Jun.
An underwater image feature registration
method based on improved CNN-RANSAC
[J]. Computer Engineering & Science.