• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

复杂网络重叠社区结构发现的演化算法研究

纪开祝,许冲,陈宝兴   

  1. (闽南师范大学计算机学院,福建 漳州 363000)
  • 收稿日期:2015-09-10 修回日期:2015-11-10 出版日期:2016-10-25 发布日期:2016-10-25
  • 基金资助:

    福建省自然科学基金(2013J01028);闽南师范大学研究生教育创新基地项目

An evolutionary algorithm for finding
overlapping community structure in complex networks

JI Kai-zhu,XU Chong,CHEN Bao-xing   

  1. (School of Computer Science,Minnan Normal University,Zhangzhou 363000,China)
  • Received:2015-09-10 Revised:2015-11-10 Online:2016-10-25 Published:2016-10-25

摘要:

复杂网络重叠社区结构的划分已成为复杂网络研究的一个热点,目前已提出了很多关于社区结构发现的算法。提出了一种基于个体从众的演化算法ICEA,基本思想是由节点邻居组成的个体依概率进行从众和变异操作,用较短时间找到最优(或拟最优)模块度的社区划分,社区结构确定后利用邻居投票机制NV发现网络的重叠节点,完成重叠社区的划分。在真实网络的实验结果表明,此算法的使用时间和划分结果都优于典型算法。

关键词: 复杂网络, 社区划分, 演化算法

Abstract:

The division of the overlapping community structure in complex networks becomes a hot research spot, and a large number of algorithms are proposed for community structure discovery. We propose an individual conformity evolutionary algorithm (ICEA). The basic idea is to perform conformity and variation on the individual according to their probability, find the community partition with optimal (or quasi optimal) module degree in a short time, and use the neighbor voting (NV) algorithm to find overlapping nodes of the network after identifying the community structure. Experiments on real networks show that the proposed algorithm outperforms the classical algorithms in terms of time cost and division results.

Key words: complex networks, community division, evolutionary algorithm