• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

一种优化组合相似度的协同过滤推荐算法

陈曦,成韵姿   

  1. (长沙理工大学计算机与通信工程学院,湖南 长沙 410114)
  • 收稿日期:2015-12-13 修回日期:2016-01-25 出版日期:2017-01-25 发布日期:2017-01-25
  • 基金资助:

    国家自然科学基金(61303043)

A collaborative filtering recommendation algorithm for
optimizing the combination of similarity

CHEN Xi,CHENG Yunzi   

  1. (School of Computer and Communication Engineering,Changsha University of Science and Technology,Changsha 410114,China)
     
  • Received:2015-12-13 Revised:2016-01-25 Online:2017-01-25 Published:2017-01-25

摘要:

为了进一步提高相似度计算的准确性,提出了一种优化组合相似度的协同过滤推荐算法。首先,建立用户项目评分时间矩阵,根据用户对共同评分项目的评分时间先后顺序,计算用户之间的影响力;其次,根据用户对共同评分项目的评分差异,计算评分差异的加权信息熵;最后,将时序行为影响力融入到基于加权信息熵的相似度中,其中融合参数α由随机粒子群优化算法选择。通过与其他相似度计算方法比较,该算法降低了标准平均绝对误差和流行度,在一定程度上降低了数据稀疏性的影响,能更准确地计算相似度,从而提高了推荐质量。

关键词: 协同过滤推荐算法, 时序行为影响力, 信息熵, 粒子群优化算法

Abstract:

In order to further improve the accuracy of similarity calculation, we propose a collaborative filtering recommendation algorithm to optimize the combination of similarity. Firstly, we establish a matrix of time. According to the time sequence that users score for the items, it can calculate the influence between users. Secondly, according to score differences on the common items, we can calculate the weighted information entropy of score difference. Finally, the influence of temporal behavior is incorporated into the similarity based on weighted information entropy. Fusion parameters therein are selected by the stochastic particle swarm optimization algorithm. In comparison with several other similarity calculation methods, the proposed algorithm reduces the normalized mean absolute error and the popularity. To some extent, it reduces the effect of data sparsity and is more accurate in similarity calculation, thus improving the quality of recommendation.

Key words: collaborative filtering recommendation algorithm, temporal behavior influence, information entropy, particle swarm optimization algorithm