摘要:
非下采样轮廓波(Contourlet)变换具有多尺度、多方向特性,能够对图像纹理和结构信息进行精确提取,可以很好地模拟人类视觉系统的多分辨率特性,基于此提出一种基于非下采样Contourlet变换的通用型盲(无参考)图像质量评价算法。首先在空间域上对图像进行非下采样Contourlet变换;然后在各方向带中分别提取能有效反映人类视觉失真程度的特征:高频幅值、平均梯度、信息熵作为图像的特征;最后将其输入到高效的分层多核学习机中学习,预测图像的质量得分。在混合失真型数据库和3个单失真型数据库上的交叉实验结果表明,该算法性能优越,能很好地预测失真图像质量,具有很好的主客观一致性。
高双,桑庆兵,严大卫. 基于非下采样轮廓波变换和多核学习的盲图像质量评价[J]. 计算机工程与科学.
GAO Shuang,SANG Qing-bing,YAN Da-wei.
Blind image quality assessment based on non-subsampled
contourlet transform and multiple kernel learning
[J]. Computer Engineering & Science.