• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 高性能计算 • 上一篇    下一篇

基于协同过滤和Slope One算法的Web服务可靠性预测

王磊,瞿佳明   

  1. (南京林业大学经济管理学院,江苏 南京 210037)
  • 收稿日期:2018-01-11 修回日期:2018-04-10 出版日期:2018-08-25 发布日期:2018-08-25
  • 基金资助:

    国家自然科学基金(61672152,71373125);南京林业大学青年科技创新基金(CX2016031);江苏省高校哲学社会科学基金(2016SJB630009);南京林业大学大学生创新训练计划(2016NFUSPITP083)

Web service reliability prediction via
collaborative filtering and Slope One algorithm

WANG Lei,QU Jiaming   

  1. (School of Economics and Management,Nanjing Forestry University,Nanjing 210037,China)

     
  • Received:2018-01-11 Revised:2018-04-10 Online:2018-08-25 Published:2018-08-25

摘要:

针对Web服务的可靠性预测已成为服务计算领域的研究热点。为提高已有的针对Web服务可靠性预测方法的性能,提出两种方法。首先,针对基于协同过滤的Web服务可靠性预测方法,对用户的相似性、服务相似性以及预测值的计算方法都进行了适当的改进;其次,将k-means聚类算法与Slope One算法进行集成,进而用于开展Web服务可靠性预测。实验结果表明,相较已有方法,本文所提出的方法具有更高的预测精度。
 
 

关键词: 协同过滤, Slope One算法, Web服务, 可靠性预测

Abstract:

Web service reliability prediction has become a research hotspot in the field of service computing. To enhance the performance of the existing Web service reliability prediction methods, two prediction methods are proposed. Firstly, for the Web services reliability prediction method based on collaborative filtering, we improve the calculation of users similarity, services similarity, and prediction values. Secondly, we integrate kmeans clustering algorithm and Slope One algorithm to do Web service reliability prediction. Experimental results show that the proposed method has higher prediction accuracy than the existing methods.
 

Key words: collaborative filtering, Slope One algorithm, Web service, reliability prediction