• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2020, Vol. 42 ›› Issue (11): 2059-2066.

• 人工智能与数据挖掘 • 上一篇    下一篇

采用自注意力机制和CNN融合的实体关系抽取

闫雄,段跃兴,张泽华   

  1. (太原理工大学信息与计算机学院,山西 晋中030600)

  • 收稿日期:2019-09-26 修回日期:2020-03-19 接受日期:2020-11-25 出版日期:2020-11-25 发布日期:2020-11-30
  • 基金资助:
    国家自然科学基金(61503273)

Entity relationship extraction fusing self-attention mechanism and CNN

YAN Xiong,DUAN Yuexing,ZHANG Zehua   

  1. (College of Information and Computer,Taiyuan University of Technology,Jinzhong 030600,China)
  • Received:2019-09-26 Revised:2020-03-19 Accepted:2020-11-25 Online:2020-11-25 Published:2020-11-30

摘要: 目前在实体关系抽取任务中,神经网络模型发挥着重要的作用,利用卷积神经网络可以自动提取特征,但是在卷积神经网络中利用固定窗口大小的卷积核来提取句子中词的上下文语义信息受到限制。因此,提出一种新的采用自注意力和卷积神经网络融合的关系抽取模型。利用原始的词向量通过自注意力机制计算得到序列中词之间的相互关系,使得输入的词向量表达出更加丰富的语义信息,从而
弥补卷积神经网络自动提取特征的不足。在 SemEval2010 Task 8数据集上的实验结果表明,加入自注意力机制以后,本文模型有利于提升实体关系抽取效果。


关键词: 实体关系抽取, 自注意力机制, 卷积神经网络, 词向量, 上下文语义

Abstract: At present, the neural network model plays an important role in entity relationship extraction tasks. Features can be automatically extracted by a convolutional neural network, but it is limited because a fixed window size convolution kernel in a convolutional neural network is used to extract contextual semantic information of words in a sentence. Therefore, this paper proposes a new relational extraction method fusing selfattention and convolutional neural network. The original word vector is calculated by the selfattention mechanism to obtain the relationship between the words in the sequence. The input word vector expresses richer semantic information, which can make up for the deficiency of the automatic extraction features of the convolutional neural network. The experimental results on the SemEval2010 Task 8 dataset show that, after adding the selfattention mechanism, our model is beneficial to improve the entity relationship extraction effect.


Key words: entity relationship extraction, selfattention mechanism, convolutional neural network, word vector, context semantic