• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (03): 473-479.

• 图形与图像 • 上一篇    下一篇

基于卷积神经网络的霉变烟叶图像识别方法研究

李亚召,云利军,叶志霞,王坤,翟乃琦   

  1. (云南师范大学信息学院,云南 昆明 650500)
  • 收稿日期:2020-05-10 修回日期:2020-07-21 接受日期:2021-03-25 出版日期:2021-03-25 发布日期:2021-03-26
  • 基金资助:
    云南省应用基础研究计划重点项目(2018FA033);云南师范大学研究生科研创新基金(ynnuyjs2019152)

Image recognition of moldy tobacco leaves based on convolutional neural network

LI Ya-zhao,YUN Li-jun,YE Zhi-xia,WANG Kun,ZHAI Nai-qi   

  1. (School of Information Science and Technology,Yunnan Normal University,Kunming 650500,China)
  • Received:2020-05-10 Revised:2020-07-21 Accepted:2021-03-25 Online:2021-03-25 Published:2021-03-26

摘要: 针对人工在线精选霉变烟叶时,存在效率低下、容易漏检等缺点,提出了一种基于卷积神经网络模型对霉变烟叶图像进行筛选、分类识别的方法。首先建立烟叶数据集,然后搭建卷积神经网络模型,利用卷积神经网络先初步提取特征,再筛选提取主要特征,然后进行各部分的特征汇总;最后实现图像的分类,从而实现了快速、准确的识别霉变烟叶图像和正常烟叶图像。实验结果表明,与人工挑选霉变烟叶的方法和烟叶传统图像分类算法相比较,搭建的卷积神经网络不仅具有较高的识别准确率,也简化了人工提取图像特征的复杂过程。


关键词: 霉变烟叶, 卷积神经网络模型, 图像分类

Abstract: In view of the shortcomings such as low efficiency and easy miss detection when manually selecting moldy tobacco leaves online, this paper proposes a method for screening, classifying and recognizing moldy tobacco leaf images based on convolutional neural network model. Firstly, the tobacco leaf data set is built up. Secondly, a convolutional neural network model is built to initially extract features, screen and extract the main features, then summarize the features of each part, and finally realize the image classification, thereby achieving fast and accurate identification of moldy tobacco leaf images and normal tobacco leaf images. The experimental results show that compared with the artificial moldy tobacco leaves selection method and the traditional image classification algorithm of tobacco leaves, the convolution neural network not only has a high recognition accuracy, but also simplifies the complex process of artificial extraction of image features.

Key words: moldy tobacco leaves, convolutional neural network, image classification