计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (03): 473-479.
李亚召,云利军,叶志霞,王坤,翟乃琦
LI Ya-zhao,YUN Li-jun,YE Zhi-xia,WANG Kun,ZHAI Nai-qi
摘要: 针对人工在线精选霉变烟叶时,存在效率低下、容易漏检等缺点,提出了一种基于卷积神经网络模型对霉变烟叶图像进行筛选、分类识别的方法。首先建立烟叶数据集,然后搭建卷积神经网络模型,利用卷积神经网络先初步提取特征,再筛选提取主要特征,然后进行各部分的特征汇总;最后实现图像的分类,从而实现了快速、准确的识别霉变烟叶图像和正常烟叶图像。实验结果表明,与人工挑选霉变烟叶的方法和烟叶传统图像分类算法相比较,搭建的卷积神经网络不仅具有较高的识别准确率,也简化了人工提取图像特征的复杂过程。