• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (09): 1620-1629.

• 图形与图像 • 上一篇    下一篇

基于深度学习的视频异常检测方法综述

何平1,李刚1,李慧斌1,2   

  1. (1.西安交通大学数学与统计学院,陕西 西安 710049;
    2.大数据算法与分析技术国家工程实验室,陕西 西安 710049)
  • 收稿日期:2021-04-26 修回日期:2021-06-04 接受日期:2022-09-25 出版日期:2022-09-25 发布日期:2022-09-25
  • 基金资助:
    国家重点研发计划(2018AAA0102201);教育部-中国移动人工智能建设项目(MCM20190701)

A survey on deep learning based video anomaly detection

HE Ping1,LI Gang1,LI Hui-bin1,2   

  1. (1.School of Mathematics and Statistics,Xi’an Jiaotong University,Xi’an 710049;
    2.National Engineering Laboratory for Big Data Analytics,Xi’an 710049,China)
  • Received:2021-04-26 Revised:2021-06-04 Accepted:2022-09-25 Online:2022-09-25 Published:2022-09-25

摘要: 近年来,随着视频监控技术的广泛应用,对海量视频进行智能分析并及时发现其中的异常状态或事件的视频异常检测任务受到了广泛关注。对基于深度学习的视频异常检测方法进行了综述。首先,对视频异常检测问题进行概述,包括基本概念、基本类型、建模流程、学习范式及评价方式。其次,提出将现有基于深度学习的视频异常检测方法分为基于重构的方法、基于预测的方法、基于分类的方法及基于回归的方法4类并详细阐述了各类方法的建模思想、代表性工作及其优缺点。然后,在此基础上介绍了常用的单场景视频异常检测公开数据集和评估指标,并对比分析了代表性异常检测方法的性能。最后,总结全文并从数据集、方法及评估指标3方面对视频异常检测研究的未来发展方向进行了展望。

关键词: 视频监控, 异常检测, 深度学习, 单场景, 学习范式

Abstract: Recent years, with the widespread use of video surveillance technology, video anomaly detection, which can intelligently analyze massive videos and quickly discover the abnormalities, has received wide attention. This paper aims to give a comprehensive survey on deep learning based video anomaly detection methods. Firstly, a brief introduction of video anomaly detection is given, including the basic concepts, basic tasks, modeling process, learning paradigms as well as the evaluation perspectives. Secondly, the video anomaly detection methods are classified into four categories: reconstruction-based, prediction-based, classification-based, and regression-based. Their basic modeling ideas, typical algorithms, advantages, and disadvantages are discussed in detail.  On this basis, the commonly used single-scene video anomaly detection public datasets and evaluation indicators are introduced, and the performance of representative anomaly detection algorithms is compared and analyzed. Finally, summary is conducted, and the future development directions related to datasets, algorithm and evaluation criteria of video anomaly detection are proposed.

Key words: surveillance video, anomaly detection, deep learning, single scene, learning paradigm