• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (09): 1646-1654.

• 图形与图像 • 上一篇    下一篇

基于深度学习的心脏核磁共振图像自动分割算法

刘从军1,徐佳陈2,肖志勇2,柴志雷2   

  1. (1.江苏科技大学计算机学院,江苏 镇江 212003;2.江南大学人工智能与计算机学院,江苏 无锡 214122)

  • 收稿日期:2021-04-26 修回日期:2021-09-16 接受日期:2022-09-25 出版日期:2022-09-25 发布日期:2022-09-25
  • 基金资助:
    国家自然科学基金(61972180);江苏省优秀青年基金(BK20190079)

An automatic cardiac magnetic resonance image segmentation algorithm based on deep learning

LIU Cong-jun1,XU Jia-chen2,XIAO Zhi-yong2,CHAI Zhi-lei2   

  1.  (1.School of Computer Science,Jiangsu University of Science and Technology,Zhenjiang 212003;
    2.School of Artificial Intelligence and Computer Science,Jiangnan University,Wuxi  214122,China)
  • Received:2021-04-26 Revised:2021-09-16 Accepted:2022-09-25 Online:2022-09-25 Published:2022-09-25

摘要: 心脏核磁共振成像技术由于其无电离辐射的优点已成为医疗诊断中的主要手段。对左心室、右心室以及左心肌进行准确的分割与识别是心脏手术前的重要一步,手动分割心脏结构耗时且易出错,因此自动分割双心室与心肌至关重要。提出了一种能充分利用心脏图像信息的多尺度特征融合U型神经网络MFF U-Net。首先,选择以U-Net++作为网络基本框架。其次,为了提高特征复用率,解决网络深度增加导致的过拟合问题,在U-Net++的编码部分提出了密集残差模块,使得网络在下采样过程中学习到更多有用特征。此外,在解码部分,为了使网络的分割结果更加符合目标器官之间的物理特征,用多个卷积核来扩大感受野并利用长距离依赖模块共享全局上下文信息,使得网络在编码还原的过程中尽可能地获取到目标器官之间的关系信息,从而使得分割结果更为精准。最后,考虑到双心室与左心肌的连贯性与唯一性,还添加了获取最大连通域与填充细小孔洞的后处理操作。采用的实验数据为ACDC心脏分割挑战数据集,其包含150位志愿者收缩期末期与舒张期末期的短轴心脏磁共振图像。在该数据集的测试集上进行验证,并通过在线提交的方式获取实验结果。实验结果表明,相较于其他算法,所提出的算法能够有效地分割目标器官,特别是舒张期末期的Dice系数分别达到了左心室0.96、右心室0.94和左心肌0.89,收缩期末期的分割精度达到了0.87,0.86和0.89。

关键词: 图像处理, 医学图像, 双心室与心肌, 核磁共振图像, 深度学习

Abstract: Because of its advantages of no ionizing radiation, Cardiac Cine Magnetic Resonance  Imag- ing (CMRI) has become the main method in medical diagnosis, and the accurate classification and re- cognition of left ventricular, right ventricular and left myocardium is an important step before the heart surgery. However, manual segmentation of cardiac structure time-consuming and error-prone, so automatic segmentation of both ventricular and myocardium is crucial. Firstly, U-Net++ is selected as the basic network framework. Secondly, in order to improve the feature reuse rate and solve the overfitting issue caused by the increase of network depth, a dense residual module is proposed in the encoding part of U-Net++, so that more features can be learned during the network down-sampling process. In addition, in the decoding part, in order to make the network segmentation results more in line with the target organ between the physical characteristics, multiple convolution kernels are used to expand the receptive field and a long distance dependent module is used share the global context information to make the network in the decoding process as much as possible to get the relationship information between the target organs and make the segmentation result more accurate. Finally, considering the consistency and uniqueness between the biventricle and the left myocardium, the post-treatment operation of obtaining the maximum connectivity domain and filling the small holes is added. The experimental data used in this paper is the ACDC Cardiac Segmentation Challenge data set, which includes SHORT axial MRI images of 150 volunteers at the end of systolic and diastolic phases. In this paper, the test set of this data set is verified, and the experimental results are obtained by online submission. Experimental results show that, compared with other methods, the proposed method can effectively segment the target organ. Specially, the Dice coefficient at the end of diastolic period reaches 0.96, 0.94 and 0.89 respectively in the left ventricle, right ventricle and left myocardium, and the segmentation precision at the end of systolic period reaches 0.87, 0.86 and 0.89 respectively.

Key words: image processing, medical image;bi-ventricles and myocardium, magnetic resonance image, deep learning